...
Как отключить всплывающую рекламу в Chrome раз и навсегда. - (3)Как отключить всплывающую рекламу в Chrome раз и навсегда. Большинство пользователей жутко р...
Без заголовка - (2)Излом времени «Норвежская Ванга» назвала три предвестника мировой войны Специалисты, ...
МАССОВЫЕ АРЕСТЫ В США НАЧИНАЮТСЯ, ЭЛИТА ГОТОВИТСЯ К АРМАГЕДДОНУ - (0)МАССОВЫЕ АРЕСТЫ В США НАЧИНАЮТСЯ, ЭЛИТА ГОТОВИТСЯ К АРМАГЕДДОНУ В недавнем видео альт...
О чём молчат руины и шепчут пирамиды - (1)О чём молчат руины и шепчут пирамиды - 1 Жан-Кристоф Мивилль «Руины на...
Физики не смогли объяснить прозрачность Солнца |
К сожалению, объяснить это число теоретически ученые до сих пор не могут. Проблема в том, что для работы теоретической модели в нее нужно подставить прозрачность плазмы, из которой состоит Солнце, следовательно, нужно знать химический состав плазмы. Для описания состава звезды астрофизики используют понятие «металличность», которое задает концентрацию «тяжелых» элементов (то есть элементов тяжелее водорода и гелия) по отношению к концентрации водорода. Наблюдения, проведенные в конце 1990-х годов, указывали на высокую концентрацию тяжелых элементов в Солнце, однако более современные и точные измерения приводят к гораздо более низким значениям металличности. Если скомбинировать эти значения с теоретически рассчитанной прозрачностью плазмы, граница конвективной и радиационной зоны будет отличаться от значения, полученного с помощью гелиосейсмологии.
Поэтому несколько лет назад группа физиков под руководством Джима Бейли (Jim Bailey) предположила, что теоретические модели неправильно рассчитывают прозрачность плазмы Солнца, и смоделировала солнечные условия в прямом эксперименте на Z-машине. Для этого ученые просветили тонкую железную фольгу мощным рентгеновским лазером, разогрели ее до температуры два миллиона кельвинов, а затем измерили прозрачность получившейся плазмы на разных длинах волн. В результате оказалось, что в действительности теория почти на треть завышает прозрачность сильно ионизированной железной плазмы. Теоретически этот результат может объяснить отклонения от гелиосейсмологических предсказаний. Тем не менее, ученые не стали спешить с выводами и заметили, что расхождение эксперимента и опыта может быть связано не только со сложным механизмом поглощения фотонов в сильно ионизированной плазме, но и с неучтенными погрешностями эксперимента.
В новой статье физики вернулись к этому эксперименту и повторили его для еще двух элементов — хрома и никеля. Эти элементы ученые выбрали для того, чтобы более подробно исследовать, как поглощение фотонов связано со строением электронной оболочки атомов. При температуре около двух миллионов кельвинов, до которой разогревается вещество внутри Солнца, атомы теряют бо́льшую часть своих электронов. В атоме никеля, ядро которого обладает самым большим зарядом из рассматриваемой тройки, электроны связаны сильнее всего, поэтому ему удается удержать десять электронов, которые заполняют две первые оболочки. Атом железа, заряд которого на единицу меньше заряда никеля, связывает электроны немного слабее, поэтому у него остается на один электрон меньше. По той же причине атом хрома (заряд на четыре меньше атома никеля) при сравнимой температуре остается всего с семью электронами.
Однако на практике физики получили немного другой результат: эксперимент довольно точно совпал с теорией не только для никеля, но и для хрома, хотя теоретические значения прозрачности ионов железа оставались занижены. Статистическая погрешность во всех трех экспериментах находилась на уровне десяти процентов. Исследователи подчеркивают, что в новых экспериментах они использовали ту же методику, что и в эксперименте с железом.
Рубрики: | интересно. |
Комментировать | « Пред. запись — К дневнику — След. запись » | Страницы: [1] [Новые] |