-Я - фотограф

наш город зимой 2013 год

 -Поиск по дневнику

Поиск сообщений в RN6LLV

 -Подписка по e-mail

 

 -Статистика

Статистика LiveInternet.ru: показано количество хитов и посетителей
Создан: 10.12.2012
Записей:
Комментариев:
Написано: 862

Выбрана рубрика Схемы устройств.


Другие рубрики в этом дневнике: фотография(1), учим английский(2), Стихи(3), Софт(1), Скаутинг(3), Разное интересное(28), радиолюбительство(182), путешествую и делюсь впечатлениями(24), коты(9), Вера а не религия(13), APRS(6)

Самодельная катушка

Дневник

Вторник, 15 Января 2013 г. 17:06 + в цитатник

Все началось что я начал делать очередную самоделку. Если кратко то это искусственная земля, которая помогает снять ВЧ токи с корпуса трансивера, тем самым свести помехи вокруг к минимуму. Первым делом нужно было найти корпус. С ним проблем не было – нашел в закромах пластиковый щиток (используется в электрике)… Теперь нужно к нему прикрепить конденсатор переменной емкости…

С креплением проблем не было: пластиковый корпус легко сверлиться, единственное пришлось рассчитать где именно нужно сверлить дырочки. Вот уже все готово и КПЕ привинчен. Теперь дело за катушкой. Проблема в том, что нужно было найти подходящее основание (каркас)… Вот и пришлось включить «соображалку». Решение нашлось совершенно неожиданное: нужно использовать пластиковую трубу и крепежки. Остальное понятно на фотографиях…

 

Рубрики:  радиолюбительство/Антенны
все об антеннах что найдено в интернете
радиолюбительство/самоделки
Схемы устройств

О питании симметричных антенн

Дневник

Пятница, 04 Января 2013 г. 20:46 + в цитатник

Правильное питание любой антенны является необходимым для ее эффективной работы. В случае использования рамочной антенны следует помнить, что это симметричная антенна, и, следовательно, она требует использования симметрирующего устройства для ее питания. Без симметрирующего устройства возможно рассиметрирование, т.е. будет наводка переотраженной от различных предметов электромагнитной волны на внешнюю оболочку коаксиального кабеля, затем попадание этой переотраженной энергии в антенну (рис.14).


В этом случае токи, наведенные на внешней оболочке, попадая в антенну, складываются с токами, возбуждаемыми передатчиком, что приведет к увеличению КСВ и возникновению дополнительных помех, т.к. в этом случае и оболочка кабеля будет излучать. Этот эффект приведет к тому, что во время приема коаксиальный кабель будет обладать “антенным” эффектом, т.е. энергия радиоволн, наведенная на внешней оболочке, попадает на вход приемника.

Простейшее симметрирующее устройство – это 2 (на 28 МГц) - 10 (на 1,8 МГц) витков коаксиала на достаточно большом ферритовом кольце (проницаемость не играет роли), например, от отклоняющей системы телевизоров, или 10 (на 28 МГц) - 30 (на 1,8 МГц) витков коаксиала на пластиковой бутылке из-под шампуня (рис.15, 16).


В этом случае этот ВЧ дроссель не пропустит ВЧ энергию, наведенную на внешней оболочке коаксиала в антенну и обратно, что равносильно симметрированию. На токи, протекающие внутри оболочки коаксиального кабеля, дроссель не окажет влияния. Особенно балансное устройство эффективно, если по каким-либо причинам кабель оказался настроенным в резонанс на основную частоту антенны, или на частоты ее нечетных резонансов, или резонансов гармоник передатчика. В этом случае его паразитное излучение особенно велико.

Следует также учитывать, что входное сопротивление волновой рамки достигает 110-130 Ом. В случае низких горизонтальных подвесов оно падает и может достигать даже величин менее 50 Ом, но рамки, предназначенные для работы на ВЧ диапазонах и имеющие вертикальный подвес, все же имеют высокое входное сопротивление. Очевидный способ согласования в этом случае – это использование четвертьволнового трансформатора (рис.17).

В случае использования 75-омного кабеля для четвертьволнового трансформатора (не забывайте о коэффициенте укорочения 0,66-0,68, в зависимости от типа пластиковой изоляции кабеля) и 50-омного кабеля для линии передачи получим очень хорошее согласование рамочной антенны. Длина кабеля, которая использована для симметрирующего устройства, также включается в длину четвертьволнового трансформатора (рис.18).

   
 

Иногда хорошие результаты дает питание рамки через симметричную пару-скрутку, используемую в проводной телефонии. Ее волновое сопротивление лежит в пределах 60-130 Ом и очень хорошо подходит для питания рамки. Волновое сопротивление скрутки можно определить практически, если имеются приборы, измеряющие индуктивность и емкость. Для этого кусок скрутки, безразлично какой длины (но лучше 2-3 метра), подключается к измерительному прибору. Сначала ее конец размыкают и меряют емкость, затем замыкают и меряют индуктивность (рис.19).

Рубрики:  радиолюбительство/Антенны
все об антеннах что найдено в интернете
Схемы устройств

Симетрирующие устройство

Дневник

Пятница, 04 Января 2013 г. 16:53 + в цитатник

Многие радиолюбители применяют для работы в эфире симметричные антенны - диполи, квадраты и т. п., - питая их несимметричным коаксиальным кабелем в этих условиях, кабель не проявляет полностью своих экранирующих свойств: во время передачи он излучает энергию, а в режиме приема принимает сигналы (и помехи) со всех направлений. Для того чтобы устранить этот эффект, применяются симметрирующие устройства, которые подключаются между кабелем и антенной. По-английски такое устройство называется BALUN от слов "ВALanced-UNba lanced", т. е. "симметричный - несимметричный. Существует много разновидностей симметрирующих устройств Одно из них, достаточно простое и эффективное описал В. Жалнераускас (UP2NV):


 "...Конструкция симметрирующего трансформатора предельно проста. К основному фидеру подключается отрезок, такого же коаксиального кабеля длиной 1- 1,5 м (см. рисунок), и двухкабельная часть фидера наматывается на крупноразмерное ферритовое кольцо. Если на одном кольце двухкабельная часть фидера не умещается, можно сложить вместе несколько колец одного типоразмера. Можно применять ферритовые кольца любых марок магнитно-мягких ферритов с проницаемостью 400.. 2000".
 Как сообщил UP2NV, испытания такого симметрирующего устройства показали, что оно хорошо работает в диапазоне частот от 2 до 30 МГц. Отметим, что это устройство не изменяет сопротивления (является трансформатором с соотношением 1:1). т.е. его можно подключать к уже имеющимся у вас симметричным антеннам, ничего не меняя в их конструкции.

Рубрики:  радиолюбительство/Антенны
все об антеннах что найдено в интернете
Схемы устройств

Метки:  

БАЛУН ИЗ ФИДЕРА

Дневник

Вторник, 01 Января 2013 г. 17:47 + в цитатник
 Настроение сейчас -
 В колонках играет - Агранович Леня - Трек 3

 В статье Гречихин А., Проскуряков Д. Антенный эффект фидера отмечалось, что для устранения этого эффекта эффективный аппереодический BALUN можно выполнить , например, из части фидера, свив его в бухту.
 Американтский коротоковолновик W7EL провёл эксперименты, изготавливая такие BALUN в виде плоской катушки (см.рисунок) из распостранённых в радиолюбительской практике кабелей. Витки катушки скрепляются изоляционной лентой. результаты этих экспериментов приведены в таблице, где указаны длинна участка фидера, из которого изготавливается BALUN, и число его витков. 


 по данным W7EL варианты BALUN для однодиапазонных антенн весьма эффективны, а для многодиапазонных представляют разумный компромисс по комбинации "полоса рабочих частот - эффективность". Эти данные приведены в "ARRL ANTENNA BOOK"(1994,p.26-12). Их можно использовать как исходные при изготовлении BALUN из кабелей других марок. Данные по RG213 подойдут для кабелей с внешним диаметром 10...11 мм, а по RG58 - с внешним диаметром 5...6 мм. Как видно из таблицы, у BALUN, рассчитанных для использования в многодиапазоных антеннах, число витков и диаметр катушки одинаковы как для толстого, так и для тонкого кабеля (т.е. по существу, не зависят от марки кабеля).


Литература

 1. Гречихин А., Проскуряков Д. Антенный эффект фидера. — Радио, 2000, № 12; 2001, № 1; № 3.

 Радио, 2001 г., № 10, с.65

Рубрики:  радиолюбительство/Антенны
все об антеннах что найдено в интернете
Схемы устройств

Самодельный балун

Дневник

Вторник, 01 Января 2013 г. 17:37 + в цитатник
 В колонках играет - А АБДУЛОВ - Абдула

Балун-делаем сами.
 Покупаем:
 1-Муфта сантехническая полиэтиленовая,диаметр 50мм цена-45руб.
 2-Две заглушки полиэтиленовые диаметр 50мм цена 20руб.
 3-Труба полипропиленовая белая не армированная диаметр наружный 26мм длинна 1м
 короче не продадут цена 50руб.
 4-Провод обмоточный медный ПЭТВ-2 диаметр 1,8мм по изоляции,3 отрезка по 1 метру,цена?
 5-Разьём ВЧ приборный SO-239 цена 50руб.
 6-Болт М6*30мм две шт. цена 5руб.
 7-Гайка М6 две шт.цена 1руб.
 8-Барашек М6 две шт.цена 10руб.
 9-Шайба под М6 широкая 4шт. цена 2руб
 10-Рым болт,или рым гайка 6-8мм 1шт.15руб.
 11-Саморез по дереву 4,2*20мм 4шт.цена 2руб.
 Итого-200руб.
 Изготовление.
 1-Из полипропиленовой трубы отрезаем заготовку длинной 65мм.
 Это будет каркас катушки.Эскиз смотри во вложениях
 2-Пропускаем три отрезка провода диаметром 1,8мм в отверстия в левой части каркаса
 и выводим с торца 1и3 провод на80 мм,2провод на 150мм,
 мотаем сразу тремя проводами 9витков,направление намотки "на себя" аккуратно заводим концы проводов в отверстия в
 правой части каркаса и выводим с правого торца.Готовим все провода под пайку.Выводы среднего провода пускаем над обмоткой,
 растояние от обмотки не менее 5мм
 3-Производим пайку согласно эскиза.
 4-С левого торца катушки припаиваем ВЧ разьём.Расстояние от торца до квадратного фланца
 разьёма 10мм.С правого торца формируем два кольца провода под болт М6,расстояние между кольцами равно
 внутреннему диаметру муфты.Обрабатываем места пайки цапон лаком.
 Расстояние колец от торца катушки с учётом того,чтобы болты М6 подключения к антенне не
 попали на резиновое уплотнение муфты.
 5-В левой заглушке делаем отверстие под резьбовую часть ВЧ-разьёма +1мм.Одеваем заглушку на разьём,
 аккуратно вставляем заглушку с катушкой в муфту до упора.В муфту в левый выступ ввёртываем два
 самореза для предотвращения выпадения заглушки.
 6-В правой части муфты изнутри размечаем ,затем сверлим два отверстия диаметром 6мм под болты подключения антенны .
 7-Вставляем болты, не забывая широкие шайба из нутри и снаружи муфты.Закручиваем гайки,накручиваем барашки.
 8-В торце правой заглушки делаем отверстие для крепления рыма,закрепляем рым.В юбке заглушки круглым напильником
 делем два углубления,чтобы при вставке заглушки не было помех от антенных болтов
 9-Вставляем правую заглушку в муфту до упора, вкручивем два самореза в правый выступ муфты.
 10-Не забываем в левой заглушке сделать два отверстия диаметром 2мм для слива конденсата.
 11-Приятного отдыха за любимым хобби.








Рубрики:  радиолюбительство/Антенны
все об антеннах что найдено в интернете
Схемы устройств

Некоторые аспекты проблемы “балуна”

Дневник

Вторник, 01 Января 2013 г. 17:27 + в цитатник
 Настроение сейчас -
 В колонках играет - www.KavkazPortal.com - www.KavkazPortal.com

 Почему мрак таинственности окружает “балуны”. В этой статье приведены исчерпывающие данные на эту тему, чтобы расставить все точки над “i” ! Применять “балун” или не применять? Вот в чём вопрос и животрепещущая тема в любительском радио.

 Поскольку некоторые определённые закономерности соединения коаксиальной фидерной линии с симметричной антенной до сего времени не соблюдаются, то до сих пор и сохраняется недопонимание относительно функции “балуна”. Многие промышленные “балуны” являются по сути дела трансформаторами импеданса и определяют тенденцию нашего лёгкого отношения к ним, не более, чем к согласователям, хотя первой основной функцией их является обеспечение правильных путей протекания токов в несимметричной и, связанной с ней, симметричной сбалансированной конфигурации.


 Чтобы помочь развеять заблуждения, в этой главе рассказывается о некоторых нежелательных явлениях, которые проявляются, когда не используется “балун” и некоторые, - при его использовании. Во многих случаях, эти явления оказывают влияние на конечное измерение импеданса антенны и КСВ.

 В этой главе также описывается простой и недорогой способ нагрузки внешней поверхности фидерной коаксиальной линии ферритовыми изделиями, которые образуют хорошо сбалансированный широкополосный дроссельный “балун”. Поскольку эта конструкция исключает применение согласующего трансформатора, как такового (с присущими ему ошибками в трансформации импеданса), достигаемая точность измерения импеданса антенны и КСВ значительно повышается. Дополнительно, с этим дроссельным “балуном” могут применяться другие согласующие устройства, поскольку вносимая им расстройка незначительна..

Раздел 21.2. Точность трансформации.

 Используя прецизионный мостовой измеритель импеданса General Radio 1606-A и измерительный приёмник Boonton 250-A, я промерил “балуны” трансформаторного типа, которые подтвердили, что, будучи нагруженными активными резистивными нагрузками в 50 Ом, эти трансформаторные “балуны” с коэффициентом трансформации 1:1 и 1:4 не обеспечивают точного согласования между их входными и выходными выводами. Это - следствие потерь, реактивных (ёмкостных) утечек и неоптимальной связи. Мои открытия подтвердились в последней работе Джона Нейгла, K4KJ [80].

Тем более, коэффициент трансформации импеданса таких “балунов” изменится ещё в больших пределах, если используется с антенной с неактивным входным сопротивлением, когда она используется в стороне от её резонансной частоты. Это изменение трансформации, связанное с применением “балунов” трансформаторного типа обычно не создаёт серьёзных проблем в эксплуатации. Тем не менее, снятая зависимость КСВ от частоты с трансформаторным и дроссельным (не дающим ошибок в трансформации импеданса) “балунами” сильно разнятся.

 Так при использовании прецизионного моста для измерения импеданса (R + jX), полученные данные будут ошибочными и с “балуном” трансформаторного типа и совсем без “балуна”.

Раздел 21.3. Изменяется ли КСВ в зависимости от длины фидерной линии?

 Мы знаем, что входной импеданс фидерной линии зависит от её длины, когда нагрузка (антенна) не согласована с этой линией.

 Порой изменением длины фидерной линии удаётся получить лучшее согласование с передатчиком (фидерная линия в качестве трансформатора сопротивления). Теоритически, КСВ не должен меняться с изменением длины фидерной линии, за исключением кажущегося улучшения КСВ, связанного с увеличением затухания при увеличении её длины..Почему же КСВ, всё-таки, порой меняется? Если КСВ с изменением длины фидерной линии меняется значительно, то это означает, что и импеданс нагрузки на конце линии тоже меняется. Импеданс нагрузки зависит от длины линии? Да. Если Вы питаете симметричную нагрузку несимметричной линией без “балуна”, то с изменением её длины меняется и импеданс нагрузки и, конечно, КСВ ! Чтобы объяснить это часто встречающееся явление, мы должны исследовать то, как же протекают токи в антенной системе.

 Чтобы понять функцию “балуна”, важно ознакомиться с путями прохождения тока в точках питания диполя. Эти пути показаны на Fig. 23-1.

Из-за своей симметричности в точках подключения фидера, диполь имеет одинаковые по амплитуде, но противоположные по знаку напряжения, этим самым не давая протекающим приложенным токам выходить на внешнюю поверхность фидерной линии. [ 81 ].

 К сожалению, в коаксиальной фидерной линии, вместо двух, имеется три пути прохождения тока. Как же могут быть три пути всего в двух проводниках ?! На радиочастотах скин-эффект изолирует токи, текущие по внешней и внутренней стороне экранирующей оболочки кабеля друг от друга. Этот эффект, немыслимый на постоянном токе и на низких частотах переменного, предотвращает взаимодействие токов, текущих по внутренней и внешней стороне экранирующей оплётки кабеля.

 Как показано на Fig. 21-1 ток I1 протекает по центральному проводнику коаксиальной фидерной линии, а ток I2 - только по внутренней стороне её оплётки. Если ток течёт только слева направо, как показано на Fig. 21-1, то I1 истекает из полудиполя 1 вниз по центральному проводнику и возвращается в генератор. Ток I2 противоположной фазы и направления протекает вверх по внутренней поверхности экранирующей оболочки фидерной линии до точки соединения с полудиполем 2. В этом месте ток I2 разделяется на две ветви I3 и I4. Ток I3 течёт обратно по внешней поверхности оплётки, а I4, равный I2 минус I3 течёт вправо, - в полудиполь 2.

 Значение тока I3 зависит от импеданса относительно “земли”, обеспечиваемого внешней поверхностью коаксиальной оплётки. Если действующая длина пути к РЧ “земле” есть число нечётное, помноженное на четверть длины волны, то импеданс относительно “земли” будет высоким и током I3 можно пренебречь. В этом случае, I1 и I4, примерно, равны. С другой стороны, если путь токов к РЧ “земле” кратен полуволне, импеданс относительно “земли” будет низким и ток I3 будет значительным. Это влияет на симметрию токов в полудиполях и приводит к излучению фидерной линией. Во многих случаях, этот путь к РЧ “земле” включает в себя сетевой шнур трансивера, домашнюю электропроводку и заканчивается “нулевым” проводом электрической сети! Итак, амплитуда тока I3 изменяется с изменением длины фидерной линии из-за изменений импеданса между полудиполем 2 и “землёй”. Помните, что токи в питающей линии I1 и I2 не могут создавать её излучения и не только потому, что имеют одинаковый уровень и противоположные фазы, но и потому, что их поля экранируются экранной оболочкой коаксиального кабеля. Тем не менее, ток I3, действительно, приводит к излучению и внешняя поверхность оплётки кабеля становится полудиполем 3, который соединён впараллель с полудиполем 2..

 Чтобы выделить это эквивалентное соединение излучателей, я упростил схему, как показано на Fig. 21-2.


Коль скоро токи I1 и I2 не взаимодействуют с другими токами, мы можем гипотетически подключить РЧ генератор непосредственно к входным зажимам антенны (диполя). Поскольку необходимость в кабеле для подвода энергии от генератора к антенне отпала, то внешняя поверхность оплётки кабеля может быть заменена проводником, включенным между полудиполем 2 и РЧ “землёй”. Мы не изменили схему электрически, поскольку ток I3 также течёт к “земле”, но, теперь, по отдельному проводнику.

 Мы знаем, что, в зависимости от высоты подвеса, импеданс диполя при резонансе обычно составляет от 50 до 75 Ом и чисто активен. На частотах выше резонансной сопротивление значительно возрастает: появляется последовательная индуктивная составляющая, на частотах ниже резонансной появляется ёмкостная составляющая. Импедансом каждого полудиполя является половина импеданса диполя в целом. Поскольку дальний конец полудиполя 3 заземлён, поведение его импеданса соответствует таковому у короткозамкнутой линии передачи с точкой замыкания в месте заземления. Поэтому, когда длина полудиполя 3 равна нечётному числу четвертей длины волны, его импеданс имеет максимум как в параллельном колебательном контуре со значением 2000…3000 Ом. Это высокое сопротивление, включенное впараллель к полудиполю 2, практически, не влияет на общий импеданс диполя. Если же действующая электрическая длина полудиполя 3 отличается от четверти длины волны (также: нечётных длин, кратных четверти длины волны), то при изменении его физической длины или частоты генератора входное сопротивление полудиполя 3 падает и появляется реактивность, включенная последовательно с активным сопротивлением. Эта реактивность носит индуктивный характер, когда длина уменьшается и ёмкостный характер,- когда длина полудиполя увеличивается. Если длина полудиполя 3 кратна полуволне, сопротивление будет минимальным, как в последовательном резонансном контуре (но не нулевым из-за излучения полудиполем 3 и потерь в “земле”).

 Итак, когда длина полудиполя 3 существенно отличается от нечётного количества четвертей длин волн,общие активные и реактивные компоненты параллельно соединённых полудиполей 2 и 3 отличаются от таковых полудиполя 1. Соответственно и импеданс полудиполя будет другим, отличным от такового, в случае отсутствия полудиполя 3.

 Возвращаясь к Fig. 21-1, мы теперь можем видеть, что без “балуна“ изменение длины питающей линии также изменяет и длину антенны (изменяется длина полудиполя 3), которая, в свою очередь, влияет на импеданс на входе фидерной линии. Поэтому и КСВ, измеренный на входе фидерной линии, изменяется с изменением длины линии, когда отсутствует, исключающий ток I3, “балун”. Это явление объясняет недоумение на лице радиолюбителя, который не использует “балун” и наивно полагает, что может подстроить свой диполь подбором длины фидера, чтобы сохранить отличный КСВ.

 Очевидно, что при связи несимметричной питающей линии с симметричной нагрузкой, какой и является диполь, первейшей функцией “балуна” является блокировка внешнего пути тока между внутренней и внешней поверхностями экранирующей оплётки коаксиального кабеля. В схеме с “балуном” ток I2 в конце не разделяется, чтобы сформировать и ток I3, а полностью течёт только в полудиполь 2. Итак, когда ток I3 равен нулю, то I4 = I1 и токи текущие в полудиполях равны, а, значит сбалансированы, симметричны.

 После представления вышеизложенного, позвольте сделать ударение на том, что “балун” в точке питания антенны не защитит оплётку кабеля от протекания тока по её внешней стороне, если коаксиальный кабель ассиметрично связан с антенной. Хотя я отношу вышеизложенную концепцию к Joe Reisert’у, W1JR, касательно его статьи [ 82 ]. Он не коснулся источника внешнего тока [ 3 ]. Следовательно, его Fig. 2 и, посвящённый проблеме параграф не проливают свет на функциональное назначение “балуна”. В противовес его комментарию к Fig. 2, когда антенные токи в фидерной линии вызваны несимметричной связью с антенной, “балун” не устраняет эти токи, но будет только менять их фазу и амплитуду.

Раздел 21. 4. Эффект от неприменения “балуна”.

Теперь становится очевидным, что получение точных результатов измерений импеданса дипольных антенн является делом сложным. Когда используется “балун” трансформаторного типа, невозможно избежать ошибок из-за тока I3, передаточные ошибки маскируют действительные значения импеданса, поскольку полудиполь 3 шунтирует вторую половину дипольной антенны, поэтому нет практического пути определения импеданса полудиполя 3, действительный импеданс антенны и КСВ, не могут быть вычислены из данных измерения [ 83 ] . Снова обратимся к Fig. 21-1, помним о том, что для любой физической длины питающей линии, электрическая длина образующей поверхности, несущей I3 не одна и та же как для внутренних проводников несущих токи I1 и I2. Это зависит от диэлектрических постоянных и коэффициента укорочения, которые различны для внутреннего и внешнего диэлектриков кабеля. Например, коэффициент укорочения для полиэтилена и тефлона (фторопласта) - основного внутреннего диэлектрика большинства кабелей составляют 0,659 и 0,695, соответственно, для вспененного полиэтилена - 0,75…0,81, в зависимости от количества воздуха во вспененном материале. Если внешняя поверхность коаксиального кабеля открыта, то коэффициент укорочения для внешней поверхности экранирующей оплётки, несущей I3, приближается к 0,95. Обычно тонкое внешнее покрытие из поливинилхлорида (иногда тефлона (фторопласта)) изменяет коэффициент укорочения до значений чуть меньше 0,95. С практической точки зрения ток I3 не является “страшным” при эксплуатации простых диполей диапазонов 160…40 метров. Дополнительно I3 не создаёт помех телевидению, даже если, фидерная линия расположена много ближе к ТВ-антенне, чем передающая антенна. Тем не менее, излучение от внешнего тока фидера может явиться причиной сильного искажения диаграммы направленности антенн: Яги, “квадратов”. Несмотря на то, что применено гамма-согласование или другой тип несимметричного входного согласующего устройства, все направленные антенны с симметричными входами требуют применения “балуна” для достижения ими оптимальных характеристик при питании коаксиальным кабелем. Например, если “балун” не применяется, питающая линия и мачта становятся отдельной ненаправленной вертикальной антенной. Мачта излучает с нежелательной вертикальной поляризацией, которая “заполняет” “нулевой провал” в заднем лепестке диаграммы направленности направленной антенны, ухудшая, таким образом, отношение излучения вперёд-назад. Мачта излучает вместе с фидерной линией, потому что токи, текущие по внешней поверхности оплётки кабеля возбуждают её посредством паразитной индуктивной и ёмкостной связи между фидерной линией и мачтой.

Раздел 21. 5. Дроссельный “балун”.

 Несмотря на то, что многие “балуны” представляют собой ту или иную форму согласующего трансформатора, альтернативой к ним является РЧ дроссель, включенный во внешний проводник коаксиальной фидерной линии. Этим достигается высокий импеданс для тока I3, без влияния на токи внутри линии. Достоинством этого метода является отсутствие ограничений на минимум КСВ и подводимую мощность. Дополнительно, здесь нет ошибок трансформации импеданса, которыми “страдают” “балуны” трансформаторного типа (которые ухудшают КСВ и кривые импеданса), потому что “дроссельный” “балун” не имеет согласующего трансформатора, - фидерная линия прямо подключена к зажимам антенны. Простым “дроссельным” “балуном” является катушка из нескольких витков кабеля фидерной линии в месте подключения к антенне.

 В частотном диапазоне 14…30 МГц необходимо намотать несколько витков диаметром 6…8 дюймов (15…20 см), чтобы почти полностью устранить ток I3 и исключить излучение фидерной линии. К сожалению, эту форму дросселя (с воздушной намоткой) нельзя осуществить практически на частотах ниже 14 МГц, так как, для получения достаточной индуктивности для подавления тока I3 придётся потратить очень много кабеля (что приведёт ещё и к дополнительному затуханию полезного сигнала).

 Следует уделить внимание размещению “дроссельного” “балуна” у антенн, смонтированных на мачтах: дроссельная катушка должна быть размещена непосредственно на зажимах активного элемента. Если катушка будет размещена на некотором расстоянии, то это приведёт к связи части фидера (между антенными зажимами и катушкой) с мачтой или бумом, которые, в свою очередь, будут связаны с одним из плечей активного вибратора. Это приводит к рассимметрированию, сводя на нет эффект от применения “балуна”: разбалансируют токи в активном вибраторе, перекашивают диаграмму направленности и приводят к излучению мачтой.

 Частотный диапазон “дроссельного” “балуна” может быть расширен до менее, чем 2,0 МГц путём применения кольцевого сердечника с высокой проницаемостью вместо воздушной намотки. При большой проницаемости сердечника индуктивность дросселя резко возрастает, тем самым оставляя высокое реактивное сопротивление, необходимое для минимизации тока I3 на низких частотах. Очень важно, что при больших мощностях в “дроссельном” “ балуне” не наступает насыщения сердечника, что является серьёзной проблемой в “балунах” “трансформаторного” типа, поскольку возбуждение сердечника очень мало: только током I3, а не большим током, которым питается антенна. По моему совету Reisert выполнил у себя “дроссельный” “балун” с торроидальным ферритовым сердечником Q1 (с проницаемостью 125…400), намотав 9 витков коаксиального кабеля RG-141 для диапазона 14…30 МГц [ 82 ]. Несмотря на то, что его (другой) 12 витковый “балун” хорошо работал на 14 МГц и выше, однако его работа на частоте 4 МГц уже оставляет желать лучшего. Проблема заключалась в направлении расположения обмотки. Трудно пропустить значительное число витков коаксиального кабеля через кольцо, которое ненамного увеличивает общую индуктивность, чтобы блокировать прохождение тока I3.

Раздел 21. 6. W2DU “балун” с ферритовыми кольцами (трубками).

 Я получил потрясающие результаты, изготовив “дроссельный” “балун” путём нанизывания ферритовых колец (“трубок”) с ещё большей проницаемостью на коаксиальный кабель питающей линии [ 84 ].

 Для читателя: кто хочет изготовить этот простой коаксиальный “балун” сообщаю, что можно применять широкий набор доступных ферритовых трубчатых изделий различных размеров и РЧ характеристик. Они резко увеличивают реактивное сопротивление проводника (добавление активного сопротивления к реактивному в этой схеме повышает широкополосность “балуна”, не повышая в нём потерь). В общем, импеданс внешней поверхности оплётки кабеля возрастает, практически, пропорционально с числом ферритовых колец (трубок) поверх неё. Комбинация из 50-омного кабеля с тефлоновым (фторопластовым) диэлектриком RG-303 (или RG-141 с удалённым внешним покрытием) с ферритовыми кольцами, имеющими внутренний диаметр 0,197 дюйма и длину 0,190 дюйма даёт превосходный малогабаритный широкополосный “балун”. Не влияя на на оба внутренних проводника коаксиального кабеля, ферритовые изделия создают высокий импеданс на внешней поверхности оплётки коаксиального кабеля. Эта конфигурация эффективно изолирует внешний выходной контакт фидерной линии от таковых - на её входе.

 Я сделал опытную конструкцию “балуна”, использовав 300 колец No.73 (с проницаемостью 2500…4000), надев их на кусок коаксиального кабеля RG-303. Импеданс внешнего проводника кабеля составил 4500 + j3800 Ом на 4 МГц; 15,6 + j13,1 Ом составило использование всего одного кольца. Для практических конструкций “балунов”, работающих в диапазоне частот 1,8…30 МГц (менее 12 дюймов в длину, включая соединитель) используйте 50 колец No. 73 (Amidon no. Fb-73-2401 или Certified Communications no. 73 - W2DU). От 30 до 250 МГц используйте 25 колец no. 43 (с проницаемостью 950…3000, Amidon no. FB-43-2401 или Certified Communications no. 43 – W2DU). Кольца no. 64 (с проницаемостью 250…375) рекомендуется использовать выше 200 МГц, но я ещё с ними не экспериментировал. Длина коаксиального кабеля должна быть лишь достаточной для размещения колец сердечника и заделки концов в соединителях.

 На Fig. 21-3 показаны измеренные значения сопротивления R, реактивного сопротивления X и импеданса Z от частоты на внешней поверхности оплётки в “дроссельном” “балуне” для обоих типов (25 и 50) колец.


С таким “балуном” ток I3 может не учитываться: он ничтожно мал в указанном частотном диапазоне. При полной разрешённой мощности и использовании данного “балуна” никаких проблем не возникает, поскольку кабель выдерживает в режиме CW - 3,5 кВт на 50 МГц, 9 кВт на 10 МГц [ 87 ]. Любой подходящий соединитель, который подойдёт для соединения с нагрузкой, выходом фидерной линии может быть использован, а выводами к симметричной нагрузке могут служить “хвостики” из центральной жилы и оплётки кабеля “балуна”. Способ соединения “балуна” с антенной остаётся на Ваше усмотрение.

 Чтобы подчеркнуть простоту применения данного “балуна” с УКВ антенной и преимущество по сравнению с капризным узкополосным четвертьволновым “балуном”, - просто оденьте на последние несколько дюймов кабеля перед подключением к антенне несколько ферритовых колец. И всё !

Раздел 21. 7. Анализ токовых “балунов” и “балунов” напряжения.

Roy Lewallen, W7EL разработал эффективный анализ и провёл проверку на симметрию в различных схемных решениях, как с использованием “балуна” “дроссельного” типа, так и “трансформаторного” “балуна” [ 118 ]. Его анализ показывает, что “дроссельные” “балуны” являются токовыми, а 4 : 1 с бифиллярной и 1 : 1 с трифиллярной намоткой “трансформаторные” являются “балунами” напряжения. Все “балуны”, с которыми мне приходилось встречаться, исключая “балун” W2DU с ферритовыми кольцами (трубками), который является токовым, все “балуны” 1 : 1, доступные на коммерческом рынке, имеющие трансформатор с трифиллярной намоткой, являются, по сути дела, “балунами напряжения”. Lewallen установил аналитически, что токовые “балуны” обеспечивают равные токи в обеих половинках диполя, независимо от импеданса другой половины. С другой стороны “балуны” напряжения обеспечивают лишь равные напряжения на обеих половинах диполя и, таким образом, не обеспечивают равных токов в каждом полудиполе, если импедансы двух половин не равны. Его опыты показывают, что токовые “балуны” дроссельного типа обеспечивают лучший баланс токов в диполе и наименьшее протекание тока в линии передачи. Труд Lewallen’а действительно открывает глаза на разработку и использование “балунов”. Исследования проведённые Dr. John (Jack) Belrose, VE2CV, со всей очевидностью подтверждают выводы Lewallen’ а, которые я описываю в разделе 21.10. В дополнение к работе Lewallen’ а, Sabin также провёл детальный анализ, касающийся действий электрического и магнитного полей при работе с 1 : 1 токовым “балуном” вместе с экспериментальной наглядностью, которая подтверждает правильность его выводов.

Раздел 21. 8. Проверка симметричности выходных токов в токовом “балуне”.

 Как было отмечено выше, “балун” с ферритовыми кольцами является токовым. Я использовал простой способ проверки этого факта, что данный “балун” - токовый и который также определяет степень баланса токов между симметричными выходными выводами. Как показано на Fig. 21-4a, “балун” смонтирован на алюминиевой пластине размером в один квадратный фут (примерно 30 х 30 см) с заземлённой на пластине экранной оболочкой.


Присоедините отдельный резистор между каждым коаксиальным выходным выводом и пластиной. На Fig. 21-4b показана электрическая эквивалентная схема опытного устройства. Подав РЧ напряжение на несимметричные выводы, измерьте напряжение, появляющееся на каждом резисторе, с помощью РЧ вольтметра. (Я использовал Hewlett – Packard 410B). Если оба резистора имеют одинаковые значения сопротивления, то на резисторах появятся одинаковые напряжения, показывающие, что через резисторы текут одинаковые токи, значит, выход симметричен. Несмотря на то, что одинаковые токи, протекающие в одинаковых сопротивлениях, указывают на то, что мы имеем дело с симметричным, относительно напряжения, выходом, это ещё не означает, что мы имеем дело с токовым “балуном”. Но мы можем подтвердить, что имеем дело с токовым “балуном”, если покажем, что равные токи текут в нагрузочных резисторах, если их сопротивления не равны. Действительно, это - тот случай, при котором в этом “балуне” напряжения, появляющиеся на неодинаковых сопротивлениях нагрузочных резисторов, прямо пропорциональны их значениям, а токи в них - равны. Например, скажем, сопротивления нагрузочных резисторов 50 и 100 Ом, а входное напряжение установлено таким образом, что на резисторе в 50 Ом выделилось напряжение в 1 В, тогда на 100-омном резисторе будет 2 В. По закону Ома подтверждается, что в цепях нагрузочных резисторов текут одинаковые токит, несмотря на их разные импедансы. Ферритовые кольца делают своё дело, изолируя друг от друга выходные и входные цепи внешнего проводника коаксиальной линии, внесением высокого импеданса между ними, которое согласует симметричный выход с несимметричным входом. Если у Вас есть на этот счёт сомнения, имейте ввиду: если кольца не вносят последовательное высокое сопротивление во внешнюю поверхность оплётки коаксиального кабеля, то нагрузочный резистор R1 на Fig. 21-4 будет замкнут накоротко низким сопротивлением внешнего проводника и низким сопротивлением цепи “земли”, так и напряжение, выделяющееся на резисторе R1, будет равно нулю.

Раздел 21.9. “Балуны” с антенными тюнерами.

 Для получения симметричного выхода для подключения открытой или лестничной линии питания, обычно, разработчиками антенных тюнеров принято ставить “балуны” на выходе тюнера..Во всех тюнерах, с которыми я знаком, использовались “балуны” трансформаторного типа, 4:1 “балуны” напряжения намотаны на ферритовых сердечниках, обычно, торроидальных.. К сожалению выходная цепь не является идеальным местом для установки “балуна”. Почему? Я, вкратце, объясню. И, далее, “балун” напряжения сильно проигрывает токовому “балуну” в получении симметричных токов в фидерной линии. В разделе 21. 10 объясняется, что если Вы используете симметричный фидер, идеальным местом для расположения “балуна” является вход антенного тюнера, а “балун” следует применять токовый “дроссельного” типа, например, “балун” W2BU.

 Давайте сначала исследуем некоторые проблемы, возникающие, когда Вы используете “балун” трансформаторного типа, выполненный на ферритовом кольце и установленный на выходе антенного тюнера. Когда “балун” трансформаторного типа выполнен на ферритовом кольце, то этот сердечник должен быть рассчитан на полный магнитный поток, вызываемый током нагрузки. Высокий конечная плотность магнитного потока может вызвать насыщение сердечника. Когда сердечник насыщается, форма РЧ сигнала на выходе сильно искажается, появляются новые нежелательные гармонические сигналы. Бестрансформаторный “дроссельный” “балун”, выполненный как катушка из коаксиального кабеля или из куска кабеля с нанизанными на его ферритовыми кольцами, не имеет сердечников, а, значит, нечему и насыщаться.. И дополнительно, внешние кольца не предназначены для магнитного потока, развиваемого током нагрузки. Кольца рассчитаны только на магнитный поток, развиваемый лишь слабым током, текущим через высокое сопротивление, которое обеспечивают ферритовые кольца на внешней поверхности внешнего проводника коаксиального кабеля (его оплётки), а поэтому такой “балун” и не генерирует гармоники.

 Другой проблемой, возникающей при применении “балунов” напряжения трансформаторного типа является распределённая ёмкость между витками его обмотки, которая влияет на баланс токов в цепях симметричного выхода, питающего симметричную фидерную линию. Входной импеданс симметричной фидерной линии может изменяться от низкого до очень высокого и, обычно, имеет реактивную составляющую. Чем выше входной импеданс антенны и чем выше рабочая частота, тем больше эффект разбаланса, вносимый распределённой паразитной междувитковой ёмкостью. С другой стороны выходной разбаланс токов при применении “балуна” с нанизанными ферритовыми кольцами ничтожно мал и может не учитываться. Другой нежелательной чертой “балуна” 4 : 1, выполненного на ферритовом кольце и расположенного на выходе антенного тюнера, может быть возможность его повреждения, которое может случиться при перегрузке “балуна” при работе с полной выходной мощностью в линию с высоким КСВ, который выражается в высоком входном импедансе, содержащем большую реактивность. Далее, нежелаемой характерной чертой 4 : 1 “балуна” являются большие вносимые потери. Типичный уровень потерь, при применении этого типа “балуна”, находится в пределах 0, 5 дБ на частоте 2 МГц и повышается до 2 дБ на частоте 30 МГц. Для сравнения, потери в “балуне” W2DU составляют 0,1…0,2 дБ по всему диапазону применяемых частот, потому что единственной потерей является затухание в куске коаксиальной линии длиной 10,5 дюйма.

Раздел 21.10. Расположение “балуна” на входе антенного тюнера.

 По крайней мере три автора опубликовали статьи, которые отстаивают расположение “балуна” на входе антенного тюнера, нежели на его выходе по той же причине, которая упомянута мной выше. В конце концов, это было сделано для того, чтобы в будущем тюнеры стали строить должным образом. Эти авторы: John Belrose, VE2CV [ 132 ], Albert Roehm, W2OBJ [ 127 ] и Richard Measures, AG6K [ 133 ]. Belrose (в 1981 году) показал симметричную Т-образную схему согласования, питаемую через 4 : 1 “балун” напряжения (смотрите следующие параграфы). Measures использует симметричную L- образную схему согласования, питаемую через 1 : 1 дроссель, или токовый “балун”, состоящий из свёрнутой в катушку части коаксиальной линии. Чтобы покрыть диапазон от 1,8 МГц до 30 МГц, его “балун” содержит 20 футов коаксиального кабеля, намотанного на трубу из изоляционного материала диаметром 5 дюймов, что довольно громоздко. Громоздкость “балуна” можно уменьшить, применив конфигурацию W2DU - кусок коаксиального кабеля длиной 10,5 дюймов с нанизанными на него ферритовыми кольцами, т.е., точно то, что и делал Roehm в своём представлении. Всё-таки, установка Roehm’ ом и Measures’ ом “балуна” на входе антенного тюнера дала прекрасные результаты.

 Позвольте мне добавить несколько слов о работе John (Jack) Belrose, VE2CV [ 132 ]. Jack является техническим консультантом (советником) ARRL и хорошо известен в радиолюбительских кругах своими экспериментами в области антенной техники. Он некоторое время занимал пост директора лаборатории радиосвязи Департамента Коммуникаций правительства Канады. Jack проводил эксперименты в плане новых подходов к расширению полосы пропускания дипольных антенн и опубликовал результаты своей работы в QST [ 134 ]. Его антенна ассиметрична в отношении к импедансу, рассматриваемому относительно каждого провода симметричной фидерной линии. В конце концов, он открыл, что токи в каждом проводе фидерной линии сильно разбалансировались при использовании 4 : 1 “балуна” напряжения при питании симметричного антенного тюнера. Затем он заменил этот “балун” “балуном” W2DU, изготовленным в заводских условиях и повторил измерения. К его величайшему удивлению, с “балуном” W2DU, токи в фидерной линии были почти идеально симметричны. Фидерная линия у Jack’ а представляла собой две параллельных коаксиальных линии, внешние проводники которых были соединены вместе и заземлены на тюнере, а центральные проводники использовались как симметричная питающая линия (т.е. имела место быть экранированная симметричная питающая линия).

 Измерения Jack’ а выявили также, что когда он использовал “балун” напряжения, ток на внешних проводниках был большим и изменялся в широких пределах в диапазоне 2…30 МГц, также сигнализируя о плохой симметрии. Напротив, с токовым “балуном” W2DU, ток на внешних проводниках был очень маленьким и практически неизменным во всём диапазоне частот, отмечая хорошую симметрию. Эти результаты измерений Jack’ а являются для меня впечатляющими, поскольку являются и подтверждением моих собственных выводов, сделанных в результате измерений, которые подтверждают, что токовый “балун” W2DU решает многие проблемы, связанные с применением “балунов” трансформаторного типа, которые я описал выше.

 Jack приготовил графики сравнения входного импеданса и ослабления в зависимости от частоты “балунов”: на ферритовом торроидальном сердечнике и W2DU. Графические данные также подтверждают мои выводы. Они показывают огромное преимущество использования ферритовых колец, одеваемых на кабель, формирующих токовый “балун”, перед “балунами” напряжения трансформаторного типа с намоткой трансформатора на ферритовом кольце. Jack указал также на уникальную возможность создания токового 4 : 1 “балуна” путём использования двух “балунов” W2DU, соединив их впараллель на входе и последовательно - на выходе.

 С тех пор как вышло первое издание этой книги, Roy Lewallen сделал сравнительный анализ, касающийся работы “балунов”, включенных до и после антенных тюнеров. В частной переписке он отметил, что имеется лишь незначительная разница в работе “балуна” (видимо: W2DU) в том и другом положении.

QRP 1 : 1 токовый “балун” для использования в походных условиях. ( by Tom Hammond, NOSS )

 В этом примере слово “балун” как-то не клеится. В действительности, это - коаксиальный РЧ дроссель с использованием феррита, который даёт такие же результаты как 1 : 1 токовый “балун”. Эффект тот же самый да и способ достижения развязки внешней поверхности оплётки кабеля фидерной линии от РЧ оказался настолько эффективным, что может оказаться “палочкой-выручалочкой” при использовании с “не совсем симметричной антенной”, какими являются большинство таковых, используемых нами.

 Для этого “балуна” я использовал 35 ферритовых колец (FB-73-2401, внешний диаметр - 0,38 дюйма, внутренний - 0,197 дюйма) по пять колец в группе. Итого: 7 групп (ферритовых трубок).

 Затем я одел их поверх отрезка коаксиального кабеля RG-174 длиной в 15 дюймов и закрепил от перемещения последовательно семь групп колец с помощью изоленты, оставив промежутки между ними свободными, для того, чтобы можно было, при необходимости, сворачивать кабель без боязни повредить кольца.


 Теперь я без особых проблем могу свернуть кабель в катушку диаметром до 3 дюймов. Ознакомтесь с прилагаемыми фотографиями “балуна” и применённых ферритовых колец. Можно применить различные типы ферритовых колец. Я использовал FB-73-2401, как наиболее подходящие, фирмы Amidon Associates: (http://www.amidoncorp.com/blprice.htm).

 

 Кольца этого типа могут быть также одеты на кабель RG-58/U (300 Вт) и RG-141/RG-142 Teflon ® (1,5 кВт) для изготовления 1:1 мощных токовых “балунов”.

Свободный перевод с английского В.Беседин ( UA9LAQ ), ua9laq@mail.ru
 г. Тюмень, февраль 2002 г.

Рубрики:  радиолюбительство/Антенны
все об антеннах что найдено в интернете
Схемы устройств

настройка и работа с искусственной землей

Дневник

Воскресенье, 30 Декабря 2012 г. 21:34 + в цитатник

С помощью устройства “искусственная земля” антенная система, образованная внешней стороной оплетки коаксиального кабеля и противовесом, подключенным к корпусу трансивера через устройство “искусственная земля”, настраивается таким образом, чтобы на корпусе трансивера был минимум напряжения. Для достижения этого настройка системы осуществляется по максимальному высокочастотному току, поступающему в устройство “искусственная земля”. Контролировать минимум высокочастотного напряжения на корпусе трансивера можно при помощи высокочастотного вольтметра, подключенного одним концом к корпусу трансивера, и по максимуму высокочастотного тока идущего в противовес, как это показано на рис. 19.

5145224_4 (440x467, 6Kb)


Противовес, подключенный к устройству “искусственная земля” должен быть длиной не менее 10 метров при работе на диапазоне 160 метров, и может быть в пределах 5-10 метров, при использовании устройства “искусственная земля” на более высокочастотных любительских коротковолновых диапазонах. На конце противовеса будет большое высокочастотное напряжение, поэтому его конец должен быть тщательно электрически изолирован. Противовес может лежать на полу по периметру комнаты. В крайнем случае, противовес или его часть, может быть свернута в широкую бухту. Удобно в качестве противовеса подключенного к устройству “искусственная земля” использовать оплетку толстого коаксиального кабеля. Противовес, подключенный к устройству “искусственная земля” будет сильно излучать, поэтому в комнате, где эксплуатируется устройство “искусственная земля”, может быть повышенный уровень радиопомех различной радиоэлектронной аппаратуре.

Настройка устройства “искусственная земля” несложная. Первоначально индуктивность переменной катушки устанавливается на минимум, емкость переменного конденсатора на максимум, и постепенным увеличением индуктивности переменной катушки и изменением емкости переменного конденсатора добиваются максимального тока в противовес по индикатору устройства “искусственная земля”.

Некоторые радиолюбители полагают, что минимума высокочастотного напряжения на корпусе трансивера можно достигнуть, подключив к трансиверу противовес длиной в четверть длины волны на наиболее “жгучем” диапазоне. Но это далеко не всегда так, и часто дает прямо противоположный эффект, в чем многие радиолюбители, пытавшиеся воспользоваться этим способом, убедились. Хотя наличие такого противовеса, безусловно, может привести и к снижению высокочастотного напряжения на корпусе передатчика.

Рубрики:  радиолюбительство/Антенны
все об антеннах что найдено в интернете
Схемы устройств

Искусственная земля в радиолюбительских условиях

Дневник

Воскресенье, 30 Декабря 2012 г. 21:26 + в цитатник

У радиолюбителей, живущих в многоэтажных домах, часто возникают проблемы с качественным заземлением своей аппаратуры. Характерная ошибка — заземлять аппаратуру на батарею отопления. Это неправильно. Если отсутствует специальная клемма на электрическом щитке, подключаться надо к трубе водоснабжения с холодной водой.

В системе заземления, так же, как и в антенно-фидерной системе, присутствует реактивная составляющая, как индуктивная, так и емкостная, которые необходимо как-то скомпенсировать. Для этой цели используются устройства, получившие название "Искусственная земля", рис.1. "Искусственная земля" на самом деле представляет собой специальное согласующее устройство с ВЧ - вольтметром.

5145224_2 (598x248, 5Kb)


На корпусе трансивера или передатчика всегда присутствует высокочастотное напряжение и, чем больше выходная мощность, тем больше его величина. "Искусственная земля" подключается между корпусом трансивера и точкой заземления, иначе говоря, в разрыв провода заземления. Для того, чтобы снять постоянную составляющую с корпуса трансивера, его соединяют с землей отдельным проводом, минуя "Искусственную землю", но в точку заземления, отличную от той куда подключается разъем Х2.

Устройства типа "Искусственная земля" очень эффективно устраняют TVI и помехи радиовещанию, телефонам, звуковоспроизводящей и видеоаппаратуре. Вместо заземления, подключаемого к разъему Х2, можно подсоединить противовес длиной В согласующих устройствах и приборах типа "Искусственная земля" могут применяться однотипные детали, причем, при желании можно одно превращать в другое, нужно только помнить, в случае "Искусственной земли" корпус должен быть надежно изолирован - ножки (стойки или крепеж) из хорошего изоляционного материала.

Трансформатор Т1 подобен трансформатору тока, используемому в КСВ-метрах. Катушка L1 содержит 22 витка. Она намотана проводом диаметром 0,1 ... 0,2 мм на ферритовом кольце 50 — 400НН. Витки равномерно распределяются, но окружности кольца. Катушка L3 от РСБ-5 или подобная, конденсатор СЗ от старого лампового радиоприемника с зазором не менее 0,5 мм. Резистор R3 выводится на лицевую панель, а R1 - подстроечный,

В завершение нашей статьи можно порекомендовать желаемый минимум радиолюбительского "хозяйства" для коротковолновиков. Что же в него входит? Прежде всего, "согласующее устройство" - ручное или автоматическое для согласования антенн. Хороший сетевой фильтр, фильтр нижних частот с частотой среза 30 МГц для устранения побочных гармоник, КСВ-метр или подобный прибор другого типа и "Искусственная земля".

5145224_3 (518x205, 4Kb)

Рекомендуется применять коаксиальный кабель в качестве антенного фидера или использовать симметричную линию связи плюс симметрирующее устройство. Следует остерегаться применить антенны открытого типа, например, VS1АА, а также широкополосных трансформаторов и катушек на феррите, особенно при больших мощностях. Могут появиться помехи приему телевидения (TVI). На рис.2, приведем схему "Искусственной земли" MFJ-931 [1], Надеюсь, что предлагаемые рекомендации помогут устранить помехи от работы Вашей любительской радиостанции.

А. Кузьменко, (RV4LK)

Рубрики:  радиолюбительство/Антенны
все об антеннах что найдено в интернете
Схемы устройств

Устройство Искусственная Земля

Дневник

Воскресенье, 30 Декабря 2012 г. 21:19 + в цитатник

Важную роль на радиостанции играет заземление. В радиопередающих устройствах желательно использовать также и высокочастотное заземление. Предлагаемое устройство "Искусственная Земля" (Artificial Ground), является эффективным ВЧ заземлением. С его помощью устраняют реактивную составляющую на участке между шасси радиостанции и реальной землей, искусственно приближая "Землю" непосредственно к корпусу радиостанции.

5145224_1 (499x521, 13Kb)


"Общую точку" — шасси Антенного Тюнера соединяют согласно схеме (рис.1) с корпусом РА, трансивера, электронного ключа и т.д. Провод применяют в изоляции диаметром 2...3 мм, медный, одножильный или многожильный. Можно применить оплетку с толстого коаксиального кабеля диаметром 10-12мм продетого в кембрик.

Если в составе радиостанции нет Антенного Тюнера, то общей точкой соединения блоков будет PA, т.е. Усилитель Мощности, но не трансивер. В качестве заземления желательно не использовать батарею центрального отопления. В худшем случае можно использовать кран (трубу) холодной воды, в лучшем — заземленный контур здания.

Устройство Искуственная Земля изготавливается в небольшом экранированном корпусе с диэлектрическими ножками. Необходимо, чтобы контакт с другими устройствами по шасси был только посредством соединения ”Общая Точка” Антенного Тюнера – Разъем Х1 Устройства Искуственная Земля.
L1 — обычный токовый трансформатор. В моем случае, это 1 виток провода диаметром 1,6 мм на столбике из сложенных вместе 2-х –3-х ферритовых колец с проницаемостью 50...400. Диаметр кольца некритичен. Через кольцо продевается провод, соединяющий вход устройства X1 и L2.
L2 — переменная индуктивность от р/станции "РСБ-5", "Микрон" и т.д.
С2 — от лампового вещательного приемника.
R1 — выводится на переднюю панель, определяет чувствительность схемы измерения.
X1 — соединен с корпусом Устройства Искуственная Земля и соединяется с корпусом Антенного Тюнера (Общая точка), при его отсутствии с PA.
Х2 — разъем ВЧ типа.

”Oбщую точку” – корпус Антенного Тюнера соединяют толстым медным проводом с обычным заземлением, например с контуром здания, тем самым выполняют соединение по постоянной составляющей - это общее требование для электрооборудования.

Х2 – Выход Устройства Искусственная Земля соединяют также с "Землей", но уже в другом месте, например с краном холодной воды или подключают противовес длиной 1/4 длины волны для конкретного диапазона. Эта часть схемы работает как ВЧ Заземление.

Порядок настройки:
Вначале настраивают Антенный Тюнер по минимум КСВ по его входу, обеспечивая необходимую нагрузку для передатчика. Затем настраивают Устройство Искуственная Земля по МАКСИМУМ показаний прибора М изменяя значения переменной индуктивности L2 и переменного конденсатора С2.

Использование ВЧ заземления способствует повышению эффективности радиостанции в плане устранения таких видов помех, как TVI, помех телефонным аппаратам и звукозаписывающей аппаратуре.

Хотел бы добавить, что есть плохая, низкого качества бытовая аппаратура и это есть большая проблема, но к большому сожалению, есть и низкого качества передающая аппаратура. Не раз приходилось слышать, как трансивер можно настроить одной отверткой. Увы, такому трансиверу ВЧ Заземление не поможет.

Игорь Подгорный, EW1MM
г.Минск 2004.

Рубрики:  радиолюбительство/Антенны
все об антеннах что найдено в интернете
Схемы устройств

1:1 балун на ферритовом кольце

Дневник

Воскресенье, 30 Декабря 2012 г. 18:38 + в цитатник

по сути этот балун не трансформирует сопротивление и является дросселем.5145224_65658862 (167x156, 4Kb)

Служит для отсечки токов асимметрии, которые протекают по внешнему слою оплетки кабеля.
Ферритовое кольцо Амидон, красного цвета.
Количество витков: 4+4.
Коэффициент трансформации: 1:1.

5145224_1323325548_12274304 (366x166, 5Kb)



Еще один вариант балуна 1:1 для QRP.



Балун выполнен на ферритовом кольце марки FT-114-43.
10 витков кабеля RG-174.5145224_86652262 (384x325, 18Kb)

Рубрики:  радиолюбительство/Антенны
все об антеннах что найдено в интернете
Схемы устройств

Искусственная земля

Дневник

Воскресенье, 30 Декабря 2012 г. 18:34 + в цитатник

"Искусственная земля".

5145224_6 (700x156, 22Kb)


При использовании случайных антенн, плохого заземления, это устройство доводит до резонанса систему заземления радиостанции. Параметры земли входят в параметры антенны, поэтому, чем лучше заземление, тем лучше работает антенна.

Рубрики:  радиолюбительство
Схемы устройств

Метроном

Дневник

Понедельник, 17 Декабря 2012 г. 00:43 + в цитатник
 Настроение сейчас -

Метроном - это своеобразные часы, позволяющие по звуковым сигналам отсчитывать равные промежутки времени с точностью до долей секунды. Такие приборы используют, например, для выработки чувства такта при обучении музыкальной грамоте, во время первых тренировок по передаче сигналов телеграфной азбукой. Схему одного из таких приборов вы видите на (рис. 6).
Рис. 6. Метроном на основе мультивибратора.




Это тоже мультивибратор, но несимметричный. В таком мультивибраторе использованы транзисторы разной структуры: Vl - n - p - n (МП35 - МП38), V2 - p - n - p (МП39 - МП42). Это позволило уменьшить общее число деталей мультивибратора. Принцип же его работы остается таким же - генерация возникает за счет положительной обратной связи между выходом и входом двухкаскадного усилителя 3Ч; связь осуществляется электролитическим конденсатором С1. Нагрузкой мультивибратора служит малогабаритная динамическая головка В1 со звуковой катушкой сопротивлением 4 - 10 Ом, например 0.1ГД - 6, 1ГД - 8 (или телефонный капсюль), создающая при кратковременных импульсах тока звуки, похожие на щелчки. Частоту следования импульсов можно регулировать переменным резистором R1 примерно от 20 до 300 импульсов в минуту. Резистор R2 ограничивает ток базы первого транзистора, когда движок резистора R1 находится в крайнем нижнем (по схеме) положении, соответствующем наибольшей частоте генерируемых колебаний. Метроном можно питать от одной батареи 3336Л или трех элементов 332, соединенных последовательно. Ток, потребляемый им от батареи, не превышает 10 мА. Переменный резистор R1 должен иметь шкалу, отградуированную по механическому метроному. Пользуясь ею, простым поворотом ручки резистора можно установить нужную частоту звуковых сигналов метронома.

Рубрики:  радиолюбительство
Схемы устройств

Электронный переключатель.

Дневник

Понедельник, 17 Декабря 2012 г. 00:42 + в цитатник
 Настроение сейчас -

 Этот прибор, схема которого показана на (рис. 5), можно использовать для коммутации двух елочных гирлянд, питающихся от сети переменного тока. Сам же электронный переключатель можно питать от двух батарей 3336Л, соеди - ненных последовательно, или от выпрямителя, который бы давал на выходе постоянное напряжение 9 - 12 В.
Рис. 5. Электронный переключатель на основе мультивибратора.




Схема переключателя очень схожа со схемой электронного звонка. Но емкости конденсаторов С1 и С2 переключателя во много раз больше емкостей аналогичных конденсаторов звонка. Мультивибратор переключателя, в котором работают транзисторы V1 и V2, генерирует колебания частотой около 0,4 Гц, а нагрузкой его усилителя мощности (транзистор V3) является обмотка электромагнитного реле К1. Реле имеет одну пару контактных пластин, работающих на переключение. Подойдет, например, реле РЭС - 10 (паспорт РС4.524.302) или другое электромагнитное реле, надежно срабатывающее от напряжения 6 - 8 В при токе 20 - 50 мА. При включении питания транзисторы V1 и V2 мультивибратора попеременно открываются и закрываются, генерируя сигналы прямоугольной формы. Когда транзистор V2 открыт, отрицательное питающее напряжение через резистор R4 и этот транзистор подается на базу транзистора V3, вводя его в насыщение. При этом сопротивление участка эмиттер - коллектор транзистора V3 уменьшается до нескольких ом и почти все напряжение источника питания прикладывается к обмотке реле К1 - реле срабатывает и своими контактами подключает к сети одну из гирлянд. Когда транзистор V2 закрыт, цепь питания базы транзистора V3 разорвана, и он также закрыт, через обмотку реле ток не течет. В это время реле отпускает якорь и его контакты, переключаясь, подключают к сети вторую елочную гирлянду. Если вы захочете изменить время переключения гирлянд, то заменяйте конденсаторы С1 и С2 конденсаторами других емкостей. Данные резисторов R2 и R3 оставьте прежними, иначе нарушится режим работы транзисторов по постоянному току. Усилитель мощности, аналогичный усилителю на транзисторе V3, можно включить и в эмиттерную цепь транзистора V1 мультивибратора. В этом случае электромагнитные реле (в том числе - самодельные) могут иметь не переключающие группы контактов, а нормально разомкнутые или нормально замкнутые. Контакты реле одного из плеч мультивибратора будут периодически замыкать и размыкать цепь питания одной гирлянды, а контакты реле другого плеча мультивибратора - цепь питания второй гирлянды. Электронный переключатель можно смонтировать на плате из гетинакса или другого изоляционного материала и вместе с батареей питания поместить в коробку из фанеры. Во время работы переключатель потребляет ток не больше 30 мА, так что энергии двух батарей 3336Л или "Крона" вполне хватит на все новогодние праздники. Аналогичный переключатель можно использовать и для других целей. Например, для иллюминации масок, аттракционов. Представьте себе выпиленную из фанеры и разрисованную фигурку героя сказки "Кот в сапогах". Позади прозрачных глаз находятся лампочки от карманного фонаря, коммутируемые электронным переключателем, а на самой фигурке - кнопка. Стоит нажать кнопку, как кот тут же начнет подмигивать тебе. А разве нельзя использовать переключатель для электрификации некоторых моделей, например модели маяка? В этом случае в коллекторную цепь транзистора усилителя мощности можно вместо электромагнитного реле включить малогабаритную лампочку накаливания, рассчитанную на небольшой ток накала, которая станет имитировать вспышки маяка. Если такой переключатель дополнить тумблером, с помощью которого в коллекторную цепь выходного транзистора можно будет включать поочередно две такие лампочки, то он может стать указателем поворотов вашего велосипеда.

Рубрики:  радиолюбительство
Схемы устройств

Простой передатчик 1-2 км

Дневник

Понедельник, 17 Декабря 2012 г. 00:38 + в цитатник
 Настроение сейчас -

Простая и легко исполнимая схема, критичность деталей не обязательна.Да и "мощу" можно раскачать приличную. Прием на обычный ЧМ приемник.


ТЕХНИЧЕСКИЕ ДАННЫЕ.
 Диапазон------------------------------------- (88-108MHZ).
 Модуляция----------------------------------- ( АМ )
 Мощность----------------------------------- (>200млв)
 Питание--------------------------------------- ( 9 в.)
 Габариты------------------------------------- -зависит от деталей
 Дальность------------------------------------- (1КМ в городе ) 2КМ поле.


ДЕТАЛИ.
 R1,R3,R4 - 4.7K
 R2 - 100K
 R5 -10K
 R6 - 270
 R7 - 75K
 C1,C2 - 3.3MK
 C3 - 6800
 C4 - 22
 C5 - 15
 C6 - 120
 C7 - 3-25
 C8 - 6.8
 T1,T2 - КТ-315, КТ-312Б
 T3 - КТ603Д.
 MK - МКЭ-332
 L1 - 5W. L2 - 2W. L3 -5W. ( D-0.5мм) L4 - 10W (D-0.3мм)
 Устойчивость и мощность, сильно зависят от расстояния между катушками L1 и L2, расстояние подбирается опытным путем.
 МОНТАЖНАЯ ПЛАТА.


Плата двухсторонняя, на нижнею "кинуть" +, будет противовесом.
 СОВЕТЫ ПО НАСТРОЙКЕ.
 Настройку производить на деревянном столе, без металлических предметов, и радиоприборов, подальше от компьютера.
 Включить р/м, поднести волномер к катушке генератора, настроить конденсатором волномера по максиму прибора. Если нет отклонения стрелки, проверить монтаж, питание, попробовать заменить транзистор генератора. Если есть значительное отклонение, генератор работает. Теперь включите приемник и пройдитесь по всему диапазону, может быть так, что в нескольких точках есть подавление, тогда удалите приемник более 3 метров и пройдитесь еще. Так можно найти истинное излучение, а не гармонику. Очень хорошо это делать приемником у которого есть индикатор точной настройки на светодиоде. Выключите питание, подавление исчезнет, появится эфирные шумы. Если будет слышна радиостанция, сдвиньте настройку, а то потом при работе р/м она будет мешать, мощности у ней больше!
 Перестройку генератора можно осуществить изменением емкости контура или изменять расстояние между витками катушки контура. Емкость крутить диэлектрической отверткой, можно сделать ее из эбонита, оргстекла, или и твердой породы дерева.
 Очень важно подобрать транзистор генератора, верхняя граница частоты транзистора должна быть в два раза больше рабочей частоты. И должен быть стабилен в работе, иногда приходится менять несколько штук.
 Если р/м с усилителем мощности, все проделать также, с начало генератор, потом усилитель мощности.
 Теперь поднести к антенне р/м, она должна быть больше чем указанно, и от конца медленно провести волномер. Заметить самое сильное отклонение стрелки, и обрезать в этом месте.
 Между генератором и усилителем мощности можно поставить экран (припаять полоску жести) и заземлить ее.




 Антенну можно изготовить из тонкого коаксиального кабеля, используя оплетку кабеля. Можно монтажный провод намотать на спицу, получиться спиральная антенна, в этом случае будет короткой и очень эффективной. А можно на плате припаять дугу (4), тоже нормально, не будет видно антенну.


Катушки контуров хорошо делать из посеребренного провода, КПД лучше. Концы транзисторов делать как можно короче.
 Можно конечно делать печатный монтаж, но лучше взять двухсторонию плату, нижняя сторона будет экраном (противовесом), а на верхней собирать навесным способом. Тогда можно использовать детали любых габаритов, собрать компактную схему, дорожки резать резаком из ножовочного полотна.
 В конце испытать на расстояние, если будет не большим, все повторить еще раз.
 После окончательной настройки, катушки контуров залить воском, загнать в корпус
 Питание р/м конечно должно не менее 6 вольт, чем больше питание тем больше мощность. Проигрываешь в габаритах, выигрываешь в расстояние.
 Схема простого волномера. (В. Полякова)

 


фото 1. Фото сборки, где монтаж сделан навесным способом, во-первых паять проще и детали разных размеров можно клепать компактно.
 - Для улучшения работы ВЧ усилителя, можно включить высокочастотный дроссель, дроссель намотан проводом ПЭВ-0.4мм на оправке диаметром 2.5мм и содержит 60 витков.


- При настройке, отключить эмиттер Т3 и настроить по частоте на приемник, потом подключить эмиттер и настроить по индикатору поля мощность.


Значительно увеличится дальность, если выход подключить к антене "SHELL"
 (Основа антенны "SHELL" изоляция то коаксиального кабеля, центральная жила вынута. )

Рубрики:  радиолюбительство
Схемы устройств

Наш самодельный индикатор поля…

Дневник

Понедельник, 17 Декабря 2012 г. 21:02 + в цитатник
 Настроение сейчас -

То что индикатор поля вещь полезная и нужная это так и есть! Не буду повторяться – об этом  уже сказано много. В свое время я тоже такой приборчик делал – работало все, но как говориться прибор как-то странно исчез.  А так уже давно собирался такой прибор построить – тем более что собираюсь строить передатчик на 80 метровый…

Оказывается что все и не так уж плохо в этом плане.  Пришел в гости к Рус
лану Анатольевичу RV6LOG помочь осваивать компьютер. Ну и разговорились – и выясняется что такой прибор уже собран. Вернее есть – но там осталось только самое малость впаять два диода Д2Ж и подключить светодиод.  Так что все сделали за полчаса! Прибор работает! Схема простая:

Кстати оказывается что очень важно какие диоды используются. Мы проверяли диоды Д2Ж пищалкой, и два диода показали разные результаты. В одном случае пищалка звучала громко, с другим диодом заметно тише.  Потом когда все сделали тестировали прибор и с разными антеннами, оказалось что стрелочный индикатор едва сдвигается (при этом сопротивление переменного резистора убрали до нуля). А когда заменили диод на другой – то все работало просто прекрасно.


С длинной антенной на мощности в 5 Вт (145 МГц) наш прибор улавливал сигнал с расстояния 3-4 метра. Чтоб зажечь светодиод требуется конечно большей мощности, и в полвата удается когда антенны находятся рядом. Ну что же все равно здорово!


Ну и конечно же первым делом протестировал как у меня в комнате ВЧ поле от трансивера и СУ есть или нет… Прибор показал что все отлично. Даже когда к фидеру подносил антенну то все было отлично. В том смысле что даже на 50 Вт (это идет по фидеру в антенну на крышу) стрелка прибора едва отклоняется. А когда рядом включил УКВ на штатную резинку то полвата заставили стрелку добежать до середины…  Отлично значит в комнате во время работы передатчика все отлично – поля ВЧ нет…

Рубрики:  радиолюбительство
Схемы устройств

Самодельные индикаторы ВЧ поля

Дневник

Понедельник, 17 Декабря 2012 г. 19:10 + в цитатник
 Настроение сейчас -

Индикатор напряженности поля может потребоваться при налаживании радиостанции или передатчика, если нужно определить уровень радиосмога и найти его источник или при поиске и обнаружении скрытых передатчиков ("шпионских радиомикрофонов"). Можно обойтись без осциллографа, даже можно обойтись без тестера, но без индикатора ВЧ поля, никогда! При кажущейся простоте  - это прибор, который обладает исключительной надежностью и работает безотказно в любых условиях. Самое прекрасное, что настраивать его практически не надо (если выбраны те компоненты, которые указаны в схеме) и ему не требуется никакого внешнего питания.

схему можно сделать еще проще - и все равно будет прекрасно работать...



Как работает схема?
        Сигнал с передатчика  с антенны W1,  через конденсатор С1 поступает на диодный детектор на VD1 и VD2, построенный по схеме удвоения напряжения. В результате на выходе детектора (правый конец диода VD2) формируется постоянное напряжение, пропорциональное интенсивности сигнала, поступающего на антенну W1. Конденсатор С2 является накопительным (если бы мы говорили о блоке питания, про него сказали «сглаживает пульсации»).




        Далее продетектированное напряжение поступает либо на индикатор на светодиоде VD3, либо на амперметр, либо на вольтметр. Перемычка J1 нужна для того, чтобы было возможно отключать светодиод VD3 во время проведения измерений по приборам (он, естественно вносит сильные искажения, причем нелинейные), но в большинстве случае его можно и не отключать (если измерения носят относительный характер, а не абсолютный)
        Конструкция.
        От конструкции зависит очень много, прежде всего необходимо решить как вы будете использовать данный индикатор: как пробник, или как измеритель интенсивности электромагнитного поля. Если как пробник, то можно ограничится только установкой светодиода VD3. Тогда при поднесении данного индикатора к антенне передатчика он будет гореть, чем ближе к антенне, тем сильнее. Такой вариант я очень рекомендую сделать все, чтобы иметь в кармане, для «полевых испытаний аппаратуры» - элементарно просто поднести его к антенне передатчика или радиостанции, чтобы убедиться, что ВЧ часть работает.
        Если необходимо измерять интенсивность (т.е. давать численные значения – это необходимо будет при настройке ВЧ-модуля), необходимо будет ставить либо вольметр, либо амперметр. На фотографиях ниже представлен гибридный вариант.


 Что касается деталей, то особых требований нет. Конденсаторы самые обычные, можно SMD, можно обычные в выводных корпусах. Но, хочу предупредить схема очень чувствительна к типам диодов. С некоторыми может вообще не работать. На схеме представлены те типы диодов, с которыми она гарантированно работает. Причем лучший результат дали старые германиевые диоды Д311. При их использовании схема работает до 1 гГц (проверено!), во всяком случае какое-то напряжение на выходе разглядеть можно. Если сразу не заработало – ОБЯЗАТЕЛЬНО попробуйте другую пару диодов (как одного типа, так и разных), т.к. часто результат работы меняется в зависимости от экземпляра.
        Приборы амперметр на ток до 100 мкА или вольтметр до 1 В, можно до 2-3 В.


 Налаживание.
        Налаживание, в принципе не требуется, все должно работать. Цель налаживания проверка работоспособности – увидеть отклонение стрелки прибора, или зажигания светодиода. Но, все-таки, я бы рекомендовал попробовать даже нормально работающий индикатор в разными типам диодов, имеющихся в наличии – может существенно увеличиться чувствительность. В любом случае надо добиваться максимального отклонения стрелки прибора
        Если у вас еще не собран передатчик или у вас просто нет доступа к чему-то работающему и дающему хорошее ВЧ-поле (например, ВЧ генератора, типа Г4-116) то, чтобы проверить работу пробника можно съездить в Останкино (метро «ВДНХ») или на Шаболовскую (метро «Шаболовская»). В Останкино этот индикатор работает даже в троллейбусе, когда проезжаешь мимо башни. На Шаболовской, надо подойти почти вплотную к самой башне. Иногда источником мощных ВЧ полей служит бытовая аппаратура, если антенну пробника расположить около сетевого провода мощной нагрузки (например, утюга или чайника), то путем периодического включения-выключения можно тоже добиться отклонения стрелки прибора. Если у кого-то есть радиостанция, то для проверки работы она вполне подойдет тоже (надо его поднести к антенне, пока радиостанция находится в режиме передачи). В качестве другого варианта можно – можно использовать сигнал к кварцевого генератора от какой-либо бытовой аппаратуры (например, видеоигры, компьютера, видеомагнитофона) – для этого надо «внутри этой аппаратуры» найти кварцевый резонатор на частоту от 0.5 мГц до 70 мГц и просто прикоснуться антенной W1 к одному из его выводов (либо поднести к одному из выводов). 
        Столь подробное описание проверки работы пробника носит только одну цель – до постройки ВЧ модуля передатчика надо быть на 100% уверенным, что ВЧ индикатор работоспособен! ЭТО ОЧЕНЬ ВАЖНО! Пока не убедитесь, что ВЧ индикатор работает приниматься за постройку передатчика бесполезно.
        Так это может выглядеть (видно, что горит VD3, естественно J1 подключена и подключен вольтметр на диапазон 2.5 В):


Перспективы и использование.
        Для налаживания передатчика вместо жесткой антенны можно использовать гибкий, многожильный. При этом можно либо просто припаивать его к измеряемым точкам схемы, либо если другим проводом массу индикатора (точку соединения VD1, С2,  VD3) соединить с массой налаживаемой ВЧ системы просто подносить этот гибкий антенный провод к тестовой точке или контуру (не припаивая). Если на контуре нет экрана – иногда бывает достаточно просто поднести антенный провод индикатора к катушке контура. В данном случае все зависит от интенсивности ВЧ напряжения в измеряемой системе.
        Вместо амперметра или вольтметра можно попробовать подключить наушники – тогда можно будет услышать сигнал передатчика, так например, рекомендуется делать в книге Борисова «Юный радиолюбитель».
        Этот же пробник (если подключен вольтметр), зная частоту на которой работает ВЧ система может помочь довольно точно измерить мощность сигнала. При этом надо снять показания прибора на минимально возможном расстоянии от антенны, затем чуть дальше (измерив это расстояние линейкой), затем подставив в формулу (ее надо поискать в справочниках -  на память я не помню) получить значение в dB. Естественно, то желательно данную операцию провести, например, с радиостанцией мощность которой известна, и только потом измерять мощность неизвестно источника. Конечно надо учитывать, что частоты эталонной радиостанции и вашего источника одни и те же, т.к. хоть в нашем случае в описанном пробнике нет входного контура он все же обладает частотоизбирающими свойствами за счет конструкции (длина антенны, емкости монтажа и т.д.)
Рубрики:  радиолюбительство
Схемы устройств

Видео-запись: Самодельные УКВ передатчики

Воскресенье, 16 Декабря 2012 г. 22:48 + в цитатник
Просмотреть видео
196 просмотров

Приводиться наглядно как делать простейший передатчик, и как его можно проверить в действии. собственно видео для того чтоб заинтересовать молодежь радио... сложного нет ничего - но результат на лицо...
Рубрики:  радиолюбительство
Разное интересное
Схемы устройств

Малогабаритный передатчик на 96-108 МГц

Дневник

Воскресенье, 16 Декабря 2012 г. 22:38 + в цитатник
 Настроение сейчас -

Экономичный, малогабаритный передатчик на 96-108 МГц. См. рис.


В те недалекие времена, когда за жучки еще не так круто гоняли, на Митьке можно было увидеть и купить несколько видов этих изделий - в розетках-тройниках, ручках и параллелепипедах из компаунда. Большинство из них было сделано по приведенной ниже схеме. Мы лично собрали несколько таких устройств (из разных марок деталей) и убедились в работоспособности и хороших параметрах схемы-высокая стабильность частоты, высокая чувствительность (разборчиво слышен очень тихий шепот на расстоянии 2 м) и достаточная дальность передачи (при питании 9В, на приемник плеера "SONY", по прямой видимости - не менее 100 м, а в железобетонном доме - по квартире стабильно, дальше не пробовали). Все детали легкодоступны. Размещайте его где хотите - в меру фантазии.

Резисторы (Все 0,125 Вт)
R1 - 50...110 k R2 - 300 k R3 - 200

Конденсаторы (Любые)
С1 - 47 Н С2 - 510 С3 - 30 р С4 - 8,2 р С5 - 120 р
 Транзистор - VТ1 - КТ368 в пластмассе. Коэффициент усиления его должен быть не менее 150. Материал корпуса значения не имеет, но вроде лучше пластмасса.



КТ368 в металле



Микрофон "Сосна"


Если требуется разместить жучек в плоской вещи (например в калькуляторе), тоёможно использовать планарный транзистор КТ3101.

Тогда L1 будет содержать витков 15 провода 0,25...0,3 и иметь диаметр - 1,5 мм. Для частоты 96 МГц катушка L1 содержит 5-6 витков провода ПЭЛ-1 (любой медный изолированный) диаметром 0,68 мм (0,5 - 0,8 мм) на оправке диаметром 5 мм. Пишут, что работа жучка улучшается, если намотать L1 на корпус транзистора. Как правило, из-за различий параметров деталей и применения близких номиналов сигнал может оказаться в любом месте УКВ диапазона. Антенна - кусок провода около 30 см. Для уменьшения длины антенны можно попробовать сделать ее резонансной, навив на диэлектрической оправке некоторое количество витков, которое подбирается опытным путем. Оно зависит от параметров конструкции и транзистора. Например, на оправке диаметром 2,5 мм длина антенны, намотанной проводом диаметром 0,16 мм, получалась от 40 до 60 мм.

В конструкции применен малогабаритный микрофон "Сосна" (на рисунке). Его реальные размеры 9х5х2 мм. Чем выше чувствительность, тем лучше.

Подбор микрофона по оптимальному току осуществляется резистором R1 в пределах 15к. Не пренебрегайте этим, часто работа жучка улучшается, а иногда из-за плохой подборки номинала этого резистора может быть очень слабая чувствительность.

Резистором R2 следует подобрать смещение по постоянному току транзистора. Если не возбуждаются колебания, то надо подобрать С4 (если схема собрана правильно).
Антенну настраивают в резонанс следующим образом:антенну-провод берут заранее большей длины и, откусывая по 1 см, с помощью индикатора напряженности поля (схем много в литературе, ничего сложного) определяют максимум излучения. Ток потребления при этом должен быть минимален. Частоту настраивают сжимая или раздвигая витки катушки L1. Если вы не уверены в правильности своего выбора, то желательно залить ее компаундом (эпоксидкой, хуже "Моментом"), чтобы избежать ухода частоты от теплового расширения, механических воздействий и микрофонного эффекта (постучите по катушке при работе передатчика и услышите дребезжание в приемнике). Приемником в экспериментах может служить любой приемник с УКВ диапазоном (желательно расширенным - 65-109 МГц)

Рубрики:  Схемы устройств

Компактный микрофонный передатчик

Дневник

Воскресенье, 16 Декабря 2012 г. 22:30 + в цитатник
 Настроение сейчас -

Очень компактный микрофонный передатчик на 100 МГц. Его размеры вписываются на плату 1х1 см. Радиус действия около 100 м.


Настройка на необходимую частоту производится подстроечным ферритовым сердечником. Транзистор BC547 используется как модулятор напряжения. Антенна - отрезок провода произвольной длины. Но лучшие результаты будут, если ее длина составит 1/8 длины волны (около 37 см).

Рубрики:  радиолюбительство
Схемы устройств

Жук "CocaCola".

Дневник

Воскресенье, 16 Декабря 2012 г. 19:05 + в цитатник
 Настроение сейчас -

Автор - просто Кот.

источник Опубликовано 31.01.2011.  Уважаемые кошаки, как известно все кошачие имеют чуткий слух. Те, которые по некоторым причинам его не имеют могут как и я пользоваться жуком. В интернете схем жуков можно найти море. Море это хорошо, но внесём немного конкретики. Для хорошего девайса необходимо не только качество передачи, но и его размеры. Именно для этого было созданно "насекомое" CocaCola. 
 

 Собственно к схеме. Она упрощена до миниума. Через R1 поступает питание на микрофон. с него через С1 на модулирует частоту генератора на VТ1 и через С4 попадает на антену. Для попадения в диапазон китайских приёмников катушка 1 безкаркасная, намотана на оправке 5мм она сдержит 5 витков провода ПЭВ0,5. Рабочее напряжение 1.5V т.е. работает от "таблетки". При надобности можно транслировать любой другои сигнал, для этого надо убрать R1 , а при большой мощности входного сигнала поставить в паралель входу резистор ~100к. 
 

 Корпус для жука выбирается с фантазией. В моём случае для коспирации(!!!) была использована крышка от "CocaCola"


Рубрики:  Разное интересное
Схемы устройств


 Страницы: [1]