-Цитатник

МАЙКА: Жуки с ядовитой кровью уничтожают колонии пчёл. Брать это насекомое в руки категорически запрещено! - (1)

МАЙКА: Жуки с ядовитой кровью уничтожают колонии пчёл. Брать это насекомое в руки категорически запр...

МАРМЕЛАДНАЯ МУХА: Мы можем случайно принять их за ос, но они не опасны. Как живут мухи-обманщики? - (0)

МАРМЕЛАДНАЯ МУХА: Мы можем случайно принять их за ос, но они не опасны. Как живут мухи-обманщики? ...

ВЕЛИКОЛЕПНЫЕ РАКОВИНЫ, КОТОРЫЕ НЕ УСТУПАЮТ ПО КРАСОТЕ ДРАГОЦЕННЫМ КАМНЯМ - (0)

ВЕЛИКОЛЕПНЫЕ РАКОВИНЫ, КОТОРЫЕ НЕ УСТУПАЮТ ПО КРАСОТЕ ДРАГОЦЕННЫМ КАМНЯМ Несметные богатс...

БЕЛОЛОБАЯ ЩУРКА: эту птицу в «черной маске» боятся все насекомые Африки - (0)

БЕЛОЛОБАЯ ЩУРКА: эту птицу в «черной маске» боятся все насекомые Африки Вот про кого можн...

АНТИКВАРИАТ. Фарфор.Япония - (0)

АНТИКВАРИАТ. Фарфор.Япония. Кофейник "Гейша". Satsuma. Япония Сахар...

 -Видео


















*




Счетчик посещений Counter.CO.KZ - бесплатный счетчик на любой вкус!




133942993_0_444d_e4e7a4d6_L (145x145, 22Kb) 133942993_0_444d_e4e7a4d6_L (145x145, 22Kb) 133942993_0_444d_e4e7a4d6_L (145x145, 22Kb)

Голландский дуэт Maywood(Майский лес)

Суббота, 20 Августа 2016 г. 12:02 + в цитатник

levnmr


Голландский дуэт Maywood(Майский лес)

Дорогие друзья!
Хочу представить вашему вниманию голландский дуэт Maywood,расцвет которого приходится на начало 80х годов.В начале 80х в бывшем СССР его можно было слышать в Новогоднюю ночь в передаче "Мелодии и ритмы зарубежной эстрады". Чуть позже советская фирма «Мелодия» выпустила один из альбомов Maywood «Different Worlds». Пластинка вышла в СССР осенью 1984 года тиражом 20 тысяч экземпляров. В ноябре 1989 года (11-14 ноября) дуэт выступил в Москве в концертном зале гостиницы "Россия". Советская пресса почти не уделила внимания этим выступлениям. По воспоминаниям очевидцев, зрителей в зале было мало, что можно объяснить почти полным отсутствием в СМИ анонсов концертов.
Maywood (Майский лес) — нидерландский дуэт, образованный сёстрами Эли и Эдит де Врис (нидерл. Alie/Aaltje, Doetie/Doetje de Vries) в городе Харлинген, выступавшими под псевдонимами Элис Мэй (Alice May) и Карен Вуд (Caren Wood).
В первой половине 1970-х годов выступали в составе различных групп, а в 1976 году решили образовать собственный дуэт «Lady Pop's», который в 1978 году изменил название на «Maywood».
Первый же сингл группы «You Treated Me Wrong» вошёл в нидерландские чарты, а уже в марте 1980 года сингл «Give Me Back My Love» вошёл в лидирующую десятку. В июле того же года композиция «Late At Night» заняла первую строчку национального хит-парада, на которой оставалась в течение трёх недель. Эта песня была выпущена в 14 странах и в нескольких была №1, а дебютный альбом группы стал золотым в Нидерландах и Швеции и провёл 24 недели в чартах.
Второй альбом «Maywood» «Different worlds» стал наиболее яркой работой в творчестве дуэта. Наиболее запоминающимися его композициями стали танцевальные «Rio» (№3 в Нидерландах и в ТОР10 в нескольких странах) и «You're the one» и лирические баллады «Since I met you» и «Gone without a reason», а композиция «Pasadena», исполненная в стиле мексиканской самбы, стала с тех пор визитной карточкой группы.Год спустя сёстры выпускают не менее красивый альбом, полный задушевных песен («Star», «Colour my rainbow», «Circumstance»), однако все они проходят незамеченными для европейской публики. Карен и Элис отправляются в мировое турне, получают приз как лучшие артисты 1982 года в Южной Африке, участвуют в интернациональном конкурсе песни в Сеуле и на фестивале «Yamaha» в Токио. Однако вернуться в европейские хит-парады они уже не смогли.Группа принимала участие в музыкальных фестивалях в Германии, Польше, Японии и Южной Корее. Пластинки дуэта выходили в 52 странах. Даже В 1990 году «Maywood» представляли Нидерланды на конкурсе Евровидения, где заняли 15-е место с песней на идерландском языке «Ik wil alles met je delen» («Я хочу разделить с тобой всё»).
С 1995 года сёстры начали сольную карьеру, не достигнув особых успехов и попали в поле зрения СМИ лишь в 1999 году, когда оспаривали между собой в судебном порядке права на использование названия «Maywood».




/


levnmr

Метки:  

Понравилось: 3 пользователям

Немного легкой поп-музыки 60х-70х годов.

Четверг, 18 Августа 2016 г. 19:29 + в цитатник

levnmr


Немного легкой поп-музыки 60х-70х годов.


Дорогие друзья!
Предлагаю вам небольшую музыкальную паузу для поднятия бодрости духа и настроения.




/


levnmr

Метки:  

Понравилось: 2 пользователям

Редкие песни ансамбля "Beatles"

Четверг, 18 Августа 2016 г. 17:50 + в цитатник

levnmr


Редкие песни ансамбля "Beatles"


Дорогие друзья!
Вы конечно знакомы с ансамблем "Beatles" и большинством его популярных песен: yesterday,girl,obladi-oblada и.т.п.
Но я хочу познакомить вас с редкими песнями Beatles - c песнями,которые вошли только в состав синглов, а не 14ти известных больших дисков


020110browimage (420x420, 183Kb)
38787b (496x500, 53Kb)
beatles1-1 (498x500, 55Kb)
Beatles - I Call Your Name2sharpen (399x400, 46Kb)
beatles hey jude odeon (524x532, 56Kb)
Beatles She Loves You-1 (500x486, 50Kb)
Beatles_45_I_Feel_Fine (550x543, 126Kb)
beatlesget (400x399, 130Kb)
Beatles-PaperbackWriter_A (480x481, 92Kb)
long_tall_sally (354x353, 30Kb)
MatchboxWCRareSlowDownTabCutSidePS359a (536x545, 372Kb)
PleasePleaseMe-From me to you-1 (489x500, 60Kb)
sfbe6302 (431x401, 19Kb)
The-Beatles-Ballad-Of-John--Y-38787 (500x498, 66Kb)
thebeatles-basboy (500x500, 45Kb)
The-Beatles-Get-Back-501869 (500x499, 92Kb)
The-Beatles-I-Feel-Fine-458237 (500x500, 63Kb)
The-Beatles-I-Want-To-Hold-Yo-435634 (500x505, 69Kb)
ticket-to-ride-yes-it-is-beatles45d-1 (500x496, 26Kb)
tumblr_kppzmi5mOV1qz7l0ao1_1280-1 (500x500, 130Kb)






/


levnmr

Метки:  

Понравилось: 3 пользователям

История моего поиска библиографии песни Skokiaan.

Четверг, 18 Августа 2016 г. 14:55 + в цитатник

levnmr


История моего поиска библиографии песни Skokiaan.


Дорогие друзья!
Когда-то в далеком 1974 году мой отец повез меня в Ригу на известный завод ВЭФ. Еще до посещения завода мы заскочили к одному его знакомому латышу-радиолюбителю. А у него дома была достаточно серъезная по тем временам стереофоническая система по последнему слову техники. Он решил продемонстрировать как будет звучать в наушниках один из его дисков. В качестве эталонного образца он поставил диск Джеймса Ласта с очень приятно звучащей мелодией.



Эта песня произвела на мою избирательную память неизгладимое впечатление и осталась у меня на всю жизнь в памяти.
Я неоднократно пытался найти какие-либо данные по этой песне и все было тщетно. Только однажды мне помог его величество случай. Я прослушивал большой архив дисков инструментальной музыки и случайно наткнулся на знакомую мне мелодию.
Это оказался инструментальный вариант Ласта всемирно известной африканской песни Skokiaan.
Вот ее оригинальный вариант



В свое время эту песню исполнял в 1954 году Луи Армстронг



Вот так закончилась история поиска очень серъезной песни начавшись совсем невинного посещения Рижского радиолюбителя....

/


levnmr

Метки:  

Понравилось: 4 пользователям

История песни "little man" - маленький человек

Четверг, 18 Августа 2016 г. 13:18 + в цитатник

levnmr


История песни "little man" - маленький человек.


Дорогие друзья!
Я хочу рассказать об истории моего поиска одной песни,которая известна в широких музыкальных кругах,но может быть и неизвестна вам,хотя я думаю,что вы ее наверняка когда-то лет 40 тому назад слышали. Сначала я ее услышал как музыкальное сопровождение в этом маленьком эпизоде выступления известного клоуна - Олега Попова.



И после этого я ее запомнил на всю жизнь. Это было в 1969 году.
Я естественно не знал название этой песни,ее автора и вобще никаких библиографических данных кроме запомнившейся мне мелодии.
В течении почти сорока лет я не мог найти каких либо ее концов.
Но однажды мне представился случай и я услышал ее исполнении известного инструменталиста Джеймса Ласта.



и так как получил в подарок большой архив инструментальной музыки, то стал просматривать около 200 дисков и в конце концов наткнулся на песню Джеймса Ласта,которая называлась Little man,а мелодию я конечно знал. И таким невероятным и случайным образом я узнал название этой удивительно-выразительной песни.
А затем по-названию нашел,что ее впервые исполняли в 1966 году
Sonny & Cher



Вот таким образом мне как меломану с детства все таки удалось разыскать эту песню.....

/


levnmr

Метки:  

Понравилось: 3 пользователям

История одной известной песни

Четверг, 18 Августа 2016 г. 12:16 + в цитатник

levnmr


История одной известной песни


Дорогие друзья!
Все вы конечно хорошо знаете песню "One way ticket" - билет в один конец. Она имеет многих зарубежных и отчественных исполнителей и настолько стала популярна,что никто и не задумывается кто ее написал и кто ее первый исполнил.
История ее возникновения тесно связана с известным рок-певцом конца 50х годов - Нилом Седакой.
Нил Седака (Neil Sedaka,)родился 13 марта 1939 г. в Бруклине
в семье сефардских евреев и является очень известным американским пианистом, вокалистом и автором песен на рубеже 1950-х 60х годов.
Седака с 13 лет пытался писать песни вместе со своим товарищем Говардом Гринфилдом. Отчаявшись добиться успеха с оригинальными работами, он провёл несколько дней, прослушивая наиболее популярные радиохиты 1958 года. По собственным воспоминаниям, таким образом ему удалось вывести секреты написания стопроцентного шлягера, которые он применил к своей новой работе, «Oh Carol», посвящённой его школьной подружке Кэрол Кинг. В 1959 году эта песня стала общенациональным хитом, а мальчишеский тенор Седаки стал непременным атрибутом музыкальных радиостанций того времени.



А теперь самое главное. Песня "One way ticket" была сочинена двумя американскими авторами: Джеком Келлером и Ханком Хантером в
В 1959 году. В этом же году она прозвучала впервые в оригинале
в исполнении Нила Седаки на диске" Oh Carol".



И только после этого она сначала стала кочевать среди множества зарубежных исполнителей,а потом в конце 60х годов перешла и в СССP
как песня " Синий синий иней лег на провода..." в исполнении ансамбля поющие гитары.



И 1979 году ее уже стал исполнять зарубежный ансамбль "Eruption" .



Вот такая у неё интересная история.

/


levnmr

Метки:  


Процитировано 1 раз
Понравилось: 5 пользователям

Маленькая собачка занесена в книгу рекордов гинесса...

Понедельник, 15 Августа 2016 г. 19:36 + в цитатник

Дорогие друзья!
Хочу познакомить вас с маленькой собачкой занесенной в книгу рекордов гинесса по количеству воздушных шариков,которые она лопает за одну минуту времени..


levnmr


 (67x24, 3Kb)

Маленькая собачка занесена в книгу рекордов гинесса...






levnmr

Метки:  

Понравилось: 3 пользователям

К 100 летнему юбилею легендарного Луи Армстронга

Понедельник, 15 Августа 2016 г. 19:06 + в цитатник

Дорогие друзья!
Этот пост я посвящаю 100 летнему юбилею легендарного джазового певца- Луи Армстронга. Как известно Луи Армстронг сам не знает,когда он точно родился. Мама работала в квартале красных фонарей в Новом Орлеане и не помнила в какой день и год его родила. Поэтому день рождения он для себя выбрал сам - 4 августа 1916 года.


levnmr


 (67x24, 3Kb)

К 100 летнему юбилею легендарного Луи Армстронга






levnmr

Метки:  

Понравилось: 6 пользователям

Редкие выступления артистов советской эстрады 60х годов

Понедельник, 15 Августа 2016 г. 18:17 + в цитатник
Дорогие друзья!
Я хочу представить из моих архивов замечательный сборник редких выступлений артистов советской эстрады 60х годов. Для тех кто любит это замечательное время сможет найти среди выступающих знакомые и может быть незнакомые лица,но которые ярко подчеркивают прекрасную атмосферу того времени.

levnmr


 (67x24, 3Kb)

Редкие выступления артистов советской эстрады 60х годов.






levnmr

Метки:  

Понравилось: 3 пользователям

Уникальный виртуоз на фортепиано - 5 летний японский мальчик

Понедельник, 15 Августа 2016 г. 17:54 + в цитатник
Дорогие друзья!
Я хочу представить вашему вниманию виртуозную игру на фортепиано
5 летнего японского мальчика.

levnmr


 (67x24, 3Kb)

5-летний японский мальчик виртуозно играет на фортепиано.






levnmr

Метки:  

Понравилось: 2 пользователям

Уникальная музыкальная 9 летняя девочка

Понедельник, 15 Августа 2016 г. 17:36 + в цитатник
Дорогие друзья!
Вы когда нибудь видели как 9 летняя девочка поет оперную партию для взрослых?
Я вам сейчас представляю такую возможность.

levnmr


 (67x24, 3Kb)

Очень музыкально талантливая девочка 9 лет.






levnmr

Метки:  

Понравилось: 3 пользователям

Ошеломляющие рисунки 17 летней мексиканки

Суббота, 13 Августа 2016 г. 19:27 + в цитатник

levnmr


Дорогие друзья!
В этом посте я хочу рассказать вам об очень талантливой и юной мексиканской художнице





levnmr

Метки:  

Понравилось: 4 пользователям

ФОТОГРАФИИ НЕ ОСТАВЛЯЮЩИЕ НИКОГО РАВНОДУШНЫМИ

Суббота, 13 Августа 2016 г. 02:42 + в цитатник

levnmr


Дорогие друзья!
Хочу продемонстрировать вам удивительные фотографии присланные со всего мира.





levnmr

Метки:  

Понравилось: 5 пользователям

Мой новый GOOGLE SITE - 100 Великих Изобретений

Пятница, 12 Августа 2016 г. 20:42 + в цитатник

levnmr






Дорогие друзья!
Хочу продемонстрировать вам мой справочник по всем 100 великим изобретениям, который я сделал на внешнем google сайте вместо того, чтобы продолжать серию постов по этой теме на Лиру.Это более наглядно и удобно.

100 ВЕЛИКИХ ИЗОБРЕТЕНИЙ


...





levnmr

Метки:  

Понравилось: 5 пользователям

100 великих изобретений. 65. РАДИОТЕЛЕГРАФ

Среда, 10 Августа 2016 г. 18:09 + в цитатник

levnmr


100 великих изобретений.


65. РАДИОТЕЛЕГРАФ



Дорогие друзья!
В этом посте и в последующих постах я хочу познакомить вас с историей развития человечества как историей мировых изобретений



65. РАДИОТЕЛЕГРАФ

Беспроволочный радиотелеграф по праву считают величайшим изобретением конца XIX века, открывшим новую эру в истории человеческого прогресса. Точно так же, как старый электрический телеграф положил начало электротехнике, создание радиотелеграфа послужило исходным пунктом развития радиотехники, а затем и электроники, грандиозные успехи которых мы видим теперь повсюду. В истории двух этих изобретений можно отметить и другую интересную параллель: создатели телеграфа Земеринг и Шиллинг были первыми изобретателями, которые попытались использовать в интересах человека недавно обнаруженную диковинку — электрический ток, а в основе действия радиотелеграфов Попова и Маркони лежало только что открытое явление электромагнитного излучения. Как тогда, так и теперь техника связи первой востребовала и использовала новейшее достижение науки.

В электрическом телеграфе носителем сигнала является электрический ток. В радиотелеграфе в качестве этого носителя выступают электромагнитные волны, которые распространяются в пространстве с огромной скоростью и не требуют для себя никаких проводов. Открытие электрического тока и открытие электромагнитных волн отделяют друг от друга ровно сто лет, и на их примере можно видеть каких разительных успехов достигла за этот век физика. Если электрический ток, как мы помним, был обнаружен Гальвани совершенно случайно, то электромагнитные волны впервые проявили себя в результате совершенно целенаправленного эксперимента Герца, который прекрасно знал, что и как ему надо искать, потому что еще за двадцать лет до его замечательного открытия существование электромагнитных волн с математической точностью было предсказано великим английским физиком Максвеллом.

Чтобы понять принцип действия радиотелеграфа, вспомним, что такое электрическое поле и что такое магнитное поле. Возьмем пластмассовый шарик и потрем его шерстяной тряпочкой — шарик после этого обретет способность притягивать к себе мелкие бумажки и сор. Он, как это обычно говорят, наэлектризуется, то есть получит на свою поверхность определенный электрический заряд. В одной из предыдущих глав уже сообщалось, что этот заряд может быть отрицательным и положительным, причем два шарика заряженных одинаково будут отталкиваться друг от друга с определенной силой, а два шарика с противоположными зарядами будут притягиваться. Почему это происходит? В свое время Фарадей предположил, что каждый шарик создает вокруг себя некое невидимое возмущение, которое он назвал электрическим полем. Поле одного заряженного шарика действует на другой шарик, и наоборот. В настоящее время гипотеза Фарадея принята наукой, хотя о природе этого поля, о том, что оно из себя представляет как таковое, ничего не известно. Кроме того, что электрическое поле существует, очевидны только два его несомненных свойства: оно распространяется в пространстве вокруг всякого заряженного тела с огромной, хотя и конечной, скоростью 300000 км/с и воздействует на любое другое электрически заряженное тело, оказавшееся в этом поле, притягивая или отталкивая его с определенной силой. Разновидностью такого воздействия можно считать электрический ток. Как уже говорилось, любой электрический ток представляет собой направленное движение заряженных частиц. Например, в металлах, это движение электронов, а в электролитах — движение ионов. Что же заставляет эти частицы двигаться упорядочение в одном направлении? Ответ известен: этой силой является электрическое поле. При замыкании цепи в проводнике по всей его длине от одного полюса источника питания до другого возникает электрическое поле, которое воздействует на заряженные частицы, заставляя их двигаться определенным образом (например, в электролите положительно заряженные ионы притягиваются к катоду, а отрицательно заряженные — к аноду).

Многое из сказанного об электрическом поле можно отнести к магнитному. Все имели дело с постоянными металлическими магнитами и знают об их свойстве притягиваться и отталкиваться друг от друга в зависимости от того, какими полюсами — одноименными или разноименными — они направлены друг к другу. Взаимодействие магнитов объясняется тем, что вокруг любого из них возникает магнитное поле, причем поле одного магнита действует на другой магнит, и наоборот. Уже отмечалось, что магнитное поле возникает в пространстве вокруг каждого движущегося заряда и любой электрический ток (который — еще раз повторим это — есть направленный поток заряженных частиц) порождает вокруг себя магнитное поле. Говорилось и об обратном явлении — явлении электромагнитной индукции, когда изменяющееся магнитное поле наводит в проводниках электрический ток. Но почему возникает этот ток и при этом возникает только тогда, когда магнитное поле меняется? Попробуем в этом разобраться. Возьмем уже рассмотренный выше трансформатор, представляющий собой две катушки, надетые на один сердечник. Включив первичную обмотку трансформатора в сеть, мы получим ток во вторичной обмотке. Это означает, что электроны во вторичной обмотке пришли в направленное движение, то есть какая-то сила начала воздействовать на них. Какова же природа этой силы? Долгое время ученые и электротехники становились в тупик перед этим вопросом. Уже используя трансформаторы, они не могли полностью понять процессы, которые в них происходили. Очевидно было только, что это явление нельзя объяснить единственно воздействием магнитного поля.

Интересную гипотезу, объясняющую это и многие другие электрические явления, выдвинул в 1864 году известный английский физик Максвелл. Чтобы понять ее, заметим, что процесс, который происходит во вторичной обмотке трансформатора, очень похож на тот, что наблюдается в любом проводнике замкнутой электрической цепи — и там и здесь электроны приходят в направленное движение. Но в проводнике цепи это происходит под воздействием электрического поля. Быть может, и во вторичной обмотке трансформатора тоже возникает электрическое поле? Но откуда оно берется? В замкнутой цепи электрическое поле появляется вследствие включения в нее источника тока (батареи или генератора). Но во вторичной цепи трансформатора, как известно, нет никаких внешних источников тока. Максвелл предположил, что электрическое поле возникает здесь под влиянием изменяющегося магнитного поля. Он пошел дальше и стал утверждать, что два эти поля теснейшим образом связаны между собой, что любое изменяющееся магнитное поле порождает электрическое, а любое изменяющееся электрическое поле порождает магнитное и что они вообще не могут существовать друг без друга, представляя как бы единое электромагнитное поле.

Теорию Максвелла можно пояснить следующим простым примером. Представим себе, что на пружине подвешен заряженный шарик. Если мы оттянем его вниз, а потом отпустим, шарик начнет колебаться вокруг какой-то точки равновесия. Предположим, что эти колебания происходят с очень большой частотой (то есть шарик успевает подняться и опуститься несколько сотен или даже тысяч раз за одну секунду). Теперь будем измерять величину напряженности электрического поля в какой-то точке неподалеку от шарика. Очевидно, она не является величиной постоянной: когда шарик будет приближаться, напряженность увеличится, когда он будет удаляться — она уменьшится. Период этих изменений, очевидно, будет равен периоду колебаний шарика. Другими словами, в этой точке возникает переменное электрическое поле. Следуя гипотезе Максвелла, мы должны предположить, что это изменяющееся электрическое поле породит вокруг себя изменяющееся с той же периодичностью магнитное поле, а последнее вызовет появление переменного электрического поля уже на большем расстоянии от заряда и так далее. Таким образом, в окружающем шарик пространстве возникнет система периодически изменяющихся электрических и магнитных полей. Образуется так называемая электромагнитная волна, бегущая по всем направлениям от колеблющегося заряда со скоростью 300000 км/с. С каждым новым колебанием шарика в пространство излучается очередная электромагнитная волна. Сколько колебаний, столько и волн. Но сколько бы волн ни излучалось в единицу времени, скорость их распространения строго постоянна. Если предположить, что шарик совершает одно колебание в секунду, то за это время «головная» часть волны окажется на расстоянии 300000 км от источника излучения. Если частота составляет 1000000 колебаний в секунду, то все эти волны заполнят за 1 секунду пространство, считая по прямой линии в сторону от источника излучения 300000 км. На долю же каждой отдельной волны придется путь в 300 м. Таким образом длина каждой волны напрямую связана с частотой колебания сгенерировавшей ее системы.

Заметим, что эта волна как бы в самой себе имеет все условия для своего распространения. Хотя каждая плотная среда в той или иной степени ослабляет ее силу, электромагнитная волна в принципе может распространяться и в воздухе, и воде, проходить сквозь дерево, стекло, человеческую плоть. Однако наилучшей средой для нее является вакуум. Теперь посмотрим, что произойдет, если на пути распространения электромагнитной волны окажется проводник. Очевидно, электрическое поле волны будет воздействовать на электроны проводника, которые вследствие этого придут в направленное движение, то есть в проводнике возникнет переменный электрический ток, имеющий тот же период колебания и ту же частоту, что и породившее его электрическое поле. Таким образом, можно дать объяснение явлению электромагнитной индукции, открытой Фарадеем.

Понятно, что наш пример несколько идеален. В реальных условиях электромагнитное поле, излучаемое колеблющимся заряженным шаром, будет очень слабым, и напряженность его на большом расстоянии практически равна нулю. Ток, наводимый во вторичном проводнике, будет настолько мал, что его не зарегистрируют никакие приборы. По этой причине при жизни Максвелла его теория не получила экспериментального подтверждения. Многие ученые разделяли его взгляды и искали способ, который помог бы обнаружить электромагнитные волны. Опыты в этом направлении стали исходной точкой для развития радиотехники.

Только в 1886 году немецкий физик Герц провел эксперимент, подтверждавший теорию Максвелла. Для возбуждения электромагнитных волн Герц применил прибор, названный им вибратором, а для обнаружения — другой прибор — резонатор.

Вибратор Герца состоял из двух стержней одинаковой длины, которые присоединялись к зажимам вторичной обмотки индукционной катушки. На обращенных друг к другу концах стержней укреплялись небольшие металлические шары. При прохождении индукционного тока через вторичную обмотку катушки между шарами проскакивала искра, и в окружающее пространство излучались электромагнитные волны. Резонатор Герца состоял из согнутой в кольцо проволоки, на обоих концах которой тоже укреплялись металлические шарики. Под действием переменного магнитного поля электромагнитной волны в резонаторе наводился переменный электрический ток, в результате чего между шариками происходил разряд. Таким образом, при разряде в вибраторе наблюдалось проскакивание искры между шариками резонатора. Объяснить это явление можно было только исходя из теории Максвелла, так что благодаря опыту Герца со всей очевидностью было доказано существование электромагнитных волн.

Герц был первым человеком, который сознательно управлял электромагнитными волнами, но он никогда не ставил перед собой задачи создать устройство, позволявшее наладить беспроволочную радиосвязь. Однако эксперименты Герца, описание которых появилось в 1888 году, заинтересовали физиков всего мира. Многие ученые стали искать пути усовершенствования излучателя и приемника электромагнитных волн. Резонатор Герца был прибором очень малой чувствительности и поэтому мог улавливать испускаемые вибратором электромагнитные волны лишь в пределах комнаты. Сначала Герцу удалось осуществить передачу на расстояние 5, а потом — 18 м.

В 1891 году французский физик Эдуард Бранли открыл, что металлические опилки, помещенные в стеклянную трубочку, при пропускании через них электрического тока не всегда обнаруживают одинаковое сопротивление. При возникновении вблизи трубочки электромагнитных волн, например, от искры, полученной посредством катушки Румкорфа, сопротивление опилок быстро падало и восстанавливалось лишь после их легкого встряхивания. Бранли указал, что это их свойство можно использовать для обнаружения электромагнитных волн.

В 1894 году английский физик Лодж впервые использовал трубку Бранли, которую он назвал «когерером» (от латинского coheare — сцепляться, связываться) для того, чтобы регистрировать прохождение электромагнитных волн. Это позволило увеличить дальность приема до нескольких десятков метров. Для восстановления чувствительности когерера после прохождения электромагнитных волн Лодж установил непрерывно действующий часовой механизм, который постоянно встряхивал его. Фактически Лоджу оставалось сделать только шаг, чтобы создать радиоприемник, но он этого шага не сделал.

Впервые мысль о возможности применения электромагнитных волн для нужд связи была изложена русским инженером Поповым. Он указал, что передаваемым сигналам можно придать определенную длительность (например, одни сигналы сделать более длинными, другие — более короткими) и с помощью азбуки Морзе передавать без проводов депеши. Впрочем, устройство это имело смысл только в том случае, если бы удалось добиться устойчивой радиопередачи на большое расстояние. Изучив трубки Бранли и Лоджа, Попов принялся за разработку еще более чувствительного когерера. В конце концов ему удалось создать очень чувствительный когерер с платиновыми электродами, заполненный железными опилками.

Следующей проблемой явилось усовершенствование процесса встряхивания опилок после их слипания, вызванного прохождением электромагнитной волны. Часовой механизм, применявшийся Лоджем для восстановления чувствительности когерера, не обеспечивал надежного действия схемы: такое встряхивание было беспорядочным и могло привести к пропуску сигналов. Попов искал автоматический метод, который бы позволил восстанавливать чувствительность когерера только после того, как сигнал принят. Проделав много опытов, Попов изобрел способ периодического встряхивания когерера с помощью молоточка электрического звонка и применил электрическое реле для включения цепи этого звонка. Схема, разработанная Поповым, обладала большой чувствительностью, и уже в 1894 году ему удалось с ее помощью принимать сигналы на расстоянии нескольких десятков метров. Во время этих опытов Попов обратил внимание на то, что дальность действия приемника заметно увеличивается, если присоединить к когереру вертикальный провод. Так была изобретена приемная антенна, использовав которую Попов внес существенные улучшения в условия работы приемника. К 1895 году он создал прибор, который представлял собой первый в истории радиоприемник.

Этот радиоприемник был устроен следующим образом. Чувствительная трубка с металлическими опилками (когерер) укреплялась в горизонтальном положении; к одному выводу трубки присоединялся отрезок проволоки, представлявший собой приемную антенну, а к другому концу — заземленный провод. Электрическая цепь батареи замыкалась через когерер и электромагнитное реле: вследствие большого сопротивления опилок в трубке (до 100000 Ом) ток в цепи батареи был недостаточен для притяжения якоря реле. Но как только трубка подвергалась действию электромагнитных волн, опилки слипались, и сопротивление трубки значительно уменьшалось. Ток в цепи возрастал, и якорь реле притягивался. При этом происходило замыкание второй цепи, и ток направлялся через обмотки звонкового реле, в результате чего звонок приходил в действие. Молоточек ударял по звонку, при этом цепь размыкалась. Молоточек возвращался в исходное положение под действием пружины и ударял по трубке, встряхивая опилки. Таким образом, трубка вновь делалась чувствительна к электромагнитным волнам.

7 мая 1895 года Попов демонстрировал работу своего радиоприемника во время доклада на заседании Русского физико-химического общества. Источником электромагнитных колебаний в его опытах служил передающий вибратор Герца, только в передатчике Попова искровой разрядник включался между антенной и землей. В январе 1896 года в журнале этого общества была опубликована статья Попова с описанием его приемника.

Затем Попов присоединил к своей схеме телеграфный аппарат Морзе и ввел запись на ленту. В результате получился первый в мире радиотелеграф — передатчик и приемник с записью сигналов по азбуке Морзе.

Рассмотрим внимательно его устройство. Между батареей и первичной обмоткой катушки Румкорфа был включен телеграфный ключ Морзе. При замыкании этого ключа постоянный ток батареи шел через витки обмотки. Прерыватель с большой частотой замыкал и размыкал цепь, в результате чего (смотри главу «Трансформатор») постоянный ток преобразовывался в переменный. Благодаря электромагнитной индукции во вторичной обмотке катушки Румкорфа наводился переменный ток высокого напряжения. Эта обмотка замыкалась на разрядник. Таким образом, каждое замыкание телеграфного ключа порождало потоки искр в разряднике. Короткими или более продолжительными замыканиями производились короткие и долгие потоки искр, которые соответствовали точкам и тире азбуки Морзе. Один полюс разрядника был заземлен, а другой соединен с антенной, которая излучала порожденные разрядником электромагнитные волны в окружающее пространство.

Некоторая часть этих волн попадала в антенну приемника и индуцировала в ней слабый переменный ток. Причем длительность каждого принимаемого импульса тока точно соответствовала продолжительности сигнала разрядника. Устройство приемника было почти таким же, что в предыдущей модели: когерер соединялся с батареей и электромагнитом, реле которого при помощи местной батареи приводило в действие пишущий аппарат Морзе, включенный в цепь вместо звонка. Пока когерер не подвергался действию электромагнитных волн, его сопротивление было настолько велико, что ток в цепи когерера не протекал. Когда же на когерер оказывали действие электромагнитные волны, его сопротивление сильно уменьшалось, и сила тока в цепи возрастала настолько, что электромагнит притягивал свой якорь, включая цепь телеграфного аппарата. Это притяжение не прекращалось, пока электромагнитные волны действовали на когерер. Одновременно с замыканием цепи приходил в действие молоточек, который ударял по когереру. Сопротивление последнего увеличивалось. Однако если волны продолжали действовать, то сопротивление тотчас опять уменьшалось и состояние малого сопротивления продолжалось несмотря на сотрясения. Все это время телеграфный аппарат чертил линию на ленте. И только когда воздействие электромагнитных волн прекращалось, проявлялось действие сотрясения, и сопротивление увеличивалось до прежней величины — аппарат выключался до появления новой волны. Таким образом на телеграфной ленте вычерчивались точки и тире, соответствующие сигналам пересылаемой депеши. 24 марта 1896 года Попов демонстрировал свою аппаратуру на заседании Российского физико-химического общества и произвел передачу сигналов на расстояние 250 м. Первая в мире радиограмма состояла из двух слов «Генрих Герц».

Одновременно с Поповым свою радиотелеграфную установку создал молодой итальянец Гульельмо Маркони. С детства он горячо интересовался электричеством, а потом увлекся идеей беспроволочного телеграфа. В 1896 году он собрал передатчик и приемник, очень похожие по своему устройству на те, которые изобрел Попов. В том же году Маркони привез свое изобретение в Англию. Мать его была англичанка, и благодаря ее связям он был хорошо принят на Британских островах. В 1896 году Маркони получил английский патент на свой радиотелеграф (это был первый патент, взятый на телеграфирование без проводов; таким образом, с формальной точки зрения, Маркони вполне справедливо считается изобретателем радио, так как первым сумел запатентовать свое изобретение). В июне 1897 года было организовано акционерное общество для применения изобретения Маркони. В свои 23 года он проявил удивительную изобретательность и предприимчивость. С первых же шагов его предприятие получило солидную финансовую основу. При любой возможности Маркони старался демонстрировать, какие выгоды давало новое средство беспроводной связи. Так, в июне 1898 года должны были состояться традиционные парусные гонки в районе Дублина. Эти гонки всегда привлекали к себе всеобщее внимание. Маркони отправился в Дублин и договорился с одной из крупных ирландских газет, что будет передавать ей по радио с парохода, находившегося в районе гонок, все сведения, которые могут интересовать публику для помещения их в экстренных выпусках газеты. Опыт удался полностью. В течение нескольких часов Маркони вел передачу, которая принималась редакцией. Полученные таким образом сведения опережали всякие другие, и газета значительно увеличила тираж. Для Маркони это тоже был большой успех: в короткий срок акционерный капитал его общества удвоился, достигнув 200 тысяч фунтов стерлингов. Это дало ему возможность быстро совершенствовать свой радиотелеграф. Через несколько лет он уже значительно опережал в своих разработках Попова.

Одним из главных элементов первых радиоприемников был когерер. Естественно поэтому, что основные усилия изобретателей, стремившихся усилить чувствительность приемных аппаратов, были направлены именно на его совершенствование. Маркони первый обратил внимание на важное свойство когерера, а именно — на зависимость его действия от величины приложенного к нему напряжения высокочастотных колебаний. Чтобы возможно полнее собрать энергию магнитного поля, создаваемого наведенным в антенне ничтожно малым током, необходимо было его усилить. Маркони нашел простой и остроумный способ решения этой проблемы. В 1898 году он включил в свой радиоприемник джиггер (что значит «сортировщик») — высокочастотный трансформатор, первичная обмотка которого включалась в одну цепь с антенной, а вторичная — подводилась к когереру. В том же году Маркони взял патент на эту схему.

Проводники a и b обозначают здесь цепь антенны, в которую была включена первичная обмотка джиггера c. В результате трансформации напряжение слабого антенного тока во вторичной цепи значительно возрастало. С джиггера d сигнал попадал на когерер j, к которому была подключена батарея b' и реле K, включавшее телеграфный аппарат, как это было в прежних схемах. Это простое нововведение позволило в несколько раз повысить чувствительность первых радиоприемных станций. Дальность передачи сразу повысилась с 30 до 85 миль. В том же году Маркони осуществил передачу через Ла-Манш.

Другой чрезвычайно важный шаг в направлении увеличения чувствительности приемника был сделан в 1899 году ближайшим помощником Попова Рыбкиным. В одном из опытов, проводимых им, оказалось, что из-за дальности расстояния приборы не действовали. Не будучи уверен в их полной исправности Рыбкин попробовал включить в цепь когерера вместо реле и телеграфного аппарата обыкновенную телефонную трубку и узнал, что каждый разряд на станции вызывает слабый треск в телефоне, так что можно было легко принять на слух любую депешу. Самым поразительным здесь было то, что когерер при таком включении не требовал встряхивания. Явление это, в то время не совсем понятное, было объяснено только несколькими годами позже. Дело в том, что если обычно когерер работал как переменное сопротивление, которое в результате спекания металлических зерен менялось почти от бесконечности до сравнительно небольшой величины, то в данной схеме он действовал на совершенно иной основе и представлял собой не что иное, как детектор в современном понимании этого слова, то есть устройство, пропускавшее ток только в одном направлении, имевшее одностороннюю проводимость и превращавшее (выпрямлявшее) переменный ток в пульсирующий постоянный. Выпрямленные детектором ничтожные антенные токи были совершенно недостаточны для приведения в действие телеграфного реле, но зато оказывались в состоянии действовать на весьма чувствительный прибор — мембрану телефонной трубки, порождая слабые звуковые волны точно так же, как это было в обыкновенном телефоне. Приложив телефон к уху, можно было слышать длинные и короткие потрескивания, соответствующие точкам и тире азбуки Морзе.

Приемное устройство с переходом на телефон сильно упростилось. Не стало механизма, записывающего телеграфные знаки, уменьшилась батарея, отпала необходимость в постоянном встряхивании металлического порошка. Если в прежнем приемнике, работавшем на записывающий аппарат, помехи от грозовых разрядов приводили часто к ложным срабатываниям реле и искажали записи, то прием на слух при известном навыке телеграфиста давал больше возможности для выделения правильно чередующихся телеграфных знаков на фоне хаотического треска помех. Но самым существенным преимуществом нового приемника была его более значительная чувствительность.

Следующий шаг в совершенствовании радиоприемников был связан с повышением их избирательности, так как первые же попытки перейти от опытов к практическому использованию электромагнитных волн для передачи сигналов на расстояние со всей остротой показали, что дальнейшее развитие этого нового вида связи и его широкое применение окажется возможным лишь в том случае, если будут найдены эффективные способы, позволяющие одновременно работать в эфире нескольким передающим станциям.

Для случая с проводной связью эта задача решалась тогда очень просто. Достаточно было каждый из приемных аппаратов, расположенных в каком-либо пункте, соединить своими индивидуальными проводами с соответствующей передающей установкой. Но как следовало поступить в случае беспроволочной передачи? Опыты работы первых станций Попова и Маркони сразу же вскрыли все несовершенство в этом отношении применявшейся тогда аппаратуры. Прием сигналов в зоне действия двух одновременно работающих станций оказывался из-за взаимных помех совершенно невозможным. Выход был найден в передаче радиотелеграфных сигналов волнами различной длины с использованием для их выделения в приемном устройстве явления резонанса.

Чтобы разобраться в сути этого способа, рассмотрим подробнее свойства индуктивной катушки и конденсатора. Представим себе катушку с большим количеством витков, по которой проходит переменный ток. Изменяющийся электрический ток, как уже говорилось прежде, порождает в окружающем пространстве изменяющееся магнитное поле, которое в свою очередь создает изменяющееся электрическое поле. Это электрическое поле индуцирует в витках катушки электрический ток, направленный навстречу основному — происходит явление, называемое самоиндукцией. Внешне этот эффект проявляется, в частности, в том, что при замыкании цепи ток в любой катушке достигает своего максимального значения не сразу, а с некоторым опозданием по сравнению, например, с обычным прямолинейным проводником. При размыкании сети изменяющееся электрическое поле индуцирует в катушке ток, совпадающей по направлению с основным, в связи с чем ток в катушке сохраняется еще некоторое время после отключения питания. Это свойство катушки задерживать и как бы сохранять в себе некоторое время ток без всякого внешнего воздействия характеризуется особой величиной, называемой индуктивностью. Каждая катушка имеет свою индуктивность, величина которой зависит от размеров проводника и его формы, но не зависит от протекающего тока.

Что касается конденсатора, то он обычно представляет собой две пластинки, расположенные очень близко друг напротив друга, но разделенные диэлектриком, то есть веществом, не пропускающим электрический ток. Пластинки конденсатора называются его обкладками. Если подключить обкладки конденсатора к полюсам источника постоянного тока (например, к электрической батарее), то на них будет накапливаться электрический заряд, который сохранится и после того, как батарея будет отключена. Способность конденсатора накапливать заряд определяется его электроемкостью. Каждый конденсатор имеет свою электроемкость, причем величина ее зависит от площади пластин, от расстояния между ними и от свойств диэлектрика, их разделяющего. Если обкладки конденсатора соединить кусочком проволоки, то произойдет его быстрая разрядка — электроны с той пластины, где они находились в избытке, перетекут на другую, где их не хватало, после чего заряд каждой из обкладок будет равен нулю.

Ну а если конденсатор разряжать не сам на себя, а через индукционную катушку? В этом случае наблюдается очень интересное явление. Представим себе заряженный конденсатор, к обкладкам которого присоединили катушку. Очевидно, конденсатор начнет разряжаться, и в цепи появится электрический ток, однако сила его не достигнет сразу максимального значения, а будет увеличиваться постепенно вследствие явления самоиндукции в катушке. В тот момент, когда конденсатор полностью разрядится, сила тока в катушке достигнет максимальной величины. Что же получится? Несмотря на то что обе пластины конденсатора уже будут иметь нулевой заряд, протекание тока через катушку продолжится, поскольку вследствие той же самоиндукции ток в катушке не может прекратиться мгновенно. Катушка словно превратится на несколько мгновений в источник тока и будет заряжать конденсатор точно так же, как это делала электрическая батарея. Только теперь заряды пластин меняются местами — та, которая, до этого была отрицательно заряженной, становится положительной, и наоборот. В результате, когда ток в катушке будет равен нулю, конденсатор окажется снова заряженным. Он, впрочем, в то же мгновение опять начнет разряжаться через катушку, и весь процесс повторится в обратном направлении. Если бы не было неизбежных потерь электроэнергии, такая перезарядка могла бы происходить сколь угодно долго.

Описанное явление называют электрическими колебаниями, а систему конденсатор — катушка, в которой происходят эти колебания, — колебательным контуром. В зависимости от того, сколько раз за одну секунду конденсатор успеет перезарядиться, говорят о той или иной частоте колебаний. Частота колебаний напрямую связана со свойствами колебательного контура, прежде всего, индуктивностью катушки и емкостью конденсатора. Замечено, что чем меньше эти величины, тем больше частота колебаний в контуре, то есть конденсатор успевает большее число раз перезарядиться за одну секунду.

Как и любые колебания (например, колебания маятника), колебания в системе конденсатор — катушка, если их не поддерживать извне, со временем прекратятся, так как первоначальная энергия будет расходоваться на нагрев проводов и электромагнитное излучение. Это означает, что с каждым колебанием максимальная величина тока в катушке и максимальное напряжение на обкладках конденсатора будут все меньше и меньше. Однако точно так же, как колебание маятника в механических часах, электрические колебания можно поддерживать, если, к примеру, подключить конденсатор к внешнему источнику переменного тока. Но переменный ток, как мы помним, тоже изменяет свою величину с определенной частотой, или, говоря другими словами, имеет собственную частоту колебаний. Любой колебательный контур не безразличен к тому, какую частоту колебания имеет питающий его ток. Если, к примеру, этот ток имеет слишком большую или слишком маленькую частоту колебания по сравнению с частотой колебания самого контура, то сила тока и его напряжение в колебательном контуре никогда не будут большими (поскольку это внешнее воздействие будет больше мешать его собственным колебаниям, чем помогать им). Однако в тех случаях, когда частота колебаний внешнего тока близка к собственной частоте колебаний контура, сила тока и напряжение контурного тока начинают возрастать и достигают своего максимума при полном совпадении этих частот. В этом случае говорят, что колебательный контур находится в резонансе. Особенно ярко проявляется резонанс в контурах с небольшим сопротивлением. В этом случае напряжение на конденсаторе и катушке может во много раз превосходить внешнее напряжение питающего тока. Происходит своего рода всплеск или бросок напряжения.

Явление электрического резонанса и было использовано для осуществления избирательной радиосвязи. Маркони одним из первых стал настраивать колебательные контуры передающей и принимающей станций на одну и ту же частоту. Для этого он, в частности, использовал свой джиггер, включая параллельно его вторичной обмотке конденсатор и получая таким образом колебательный контур. Схема передатчиков также была изменена включением в цепь антенны индуктивных катушек и конденсаторов, так что каждая передающая станция могла передавать сигналы с определенной частотой колебания волны. Поскольку теперь несколько радиостанций передавали сообщения каждая со своей частотой, то излучаемые ими волны возбуждали в приемной антенне переменные токи различных частот. Но приемник выбирал только те сигналы, частота которых совпадала с собственной частотой колебания его колебательного контура, ведь только в этом случае наблюдалось явление резонанса. Джиггер в этой схеме работал как фильтр и усиливал не любой антенный ток (как это было прежде), а выделял среди них ток той частоты, на которую был настроен данный приемник. С этого времени резонансные контуры стали неотъемлемой частью как приемных, так и передающих устройств.

В начале XX века уже несколько десятков ученых во многих странах с увлечением занимались беспроволочным телеграфом. Однако наибольшие успехи по-прежнему были связаны с именем Маркони, который, несомненно, был одним из самых выдающихся радиотехников этого времени. После ряда опытов передачи на большие расстояния Маркони сделал поразительное открытие — оказалось, что выпуклость земного шара нисколько не мешает движению электромагнитных волн. Это подтолкнуло его к эксперименту по телеграфированию через океан. Уже в 1901 году состоялась первая в истории трансатлантическая радиопередача, во время которой помощник Маркони, Флеминг, передал с английской станции в Польдю кодом Морзе букву "S", а Маркони, находившийся на другом берегу Атлантического океана, на острове Ньюфаундленде, принял ее на расстоянии 1800 миль.

Следующим важным моментом в усовершенствовании приемников стало создание новых волноуловителей (детекторов). Когерер Бранли сыграл важную роль в первые годы развития радиосвязи. Однако он был слишком капризным и сложным в обращении. Кроме того, его приходилось постоянно встряхивать для восстановления способности отзываться на очередной радиосигнал. Одной из центральных задач стало создание «самонастраивающегося» когерера. Первая попытка в этом направлении была сделана в 1899 году Поповым с телефоном. Вторая Маркони, сконструировавшего в начале XX века свой магнитный детектор.

Принцип действия магнитного детектора основывался на явлении так называемого гистерезиса. Дело в том, что обычно железо намагничивается с некоторым опозданием во времени. Однако намагничивание можно усилить, если в момент воздействия внешнего магнитного поля вызвать заметное сотрясение молекул железа. Это можно сделать путем механического удара или коротким импульсом другого магнитного поля. Данное явление и было использовано Маркони.

В его магнитном детекторе на два роликовых диска натягивалась бесконечная лента из мягкой железной проволоки, двигавшаяся со скоростью пять дюймов в секунду и проходившая под полюсами двух постоянных магнитов внутри небольшой стеклянной трубки. На эту трубку наматывались первичная и вторичная обмотки, причем первичная обмотка включалась в цепь антенны, а вторичная присоединялась к телефону. Проходя под полюсами магнита, железная лента намагничивалась сначала в одном, а потом в противоположном направлении. Само перемагничивание происходило под средними сдвоенными одноименными полюсами, но не тотчас в момент прохождения под ними ленты, а несколько запаздывая (из-за упомянутого выше свойства железа). Картина магнитных линий, исходивших из полюсов и замыкавшихся в железной проволоке, искажалась, и магнитные линии представлялись как бы увлекаемыми проволокой в сторону движения. Высокочастотное магнитное поле, образовавшееся внутри первичной обмотки во время прохождения принимаемого радиосигнала, мгновенно ослабляло явление гистерезиса в железной проволоке и производило в ней ударное перемагничивание. Конфигурация силовых линий резко изменялась, и они устанавливались в том положении, которое свойственно им при неподвижной проволоке. Это внезапное смещение силовых линий создавало мгновенный ток во вторичной обмотке, вызывавший звук в телефоне. Прибор не требовал встряхиваний и был всегда готов к приему очередного сигнала. В те же годы другими радиотехниками были предложены другие типы детекторов.

С этого времени началось бурное развитие радиотехники. В 1902 году, используя свой магнитный детектор, Маркони провел серию замечательных опытов на итальянском военном крейсере «Карло Альберто». Во время плавания из Италии в Англию и Россию он совершенно свободно вел прием на расстоянии 2000 км от Польдю, где находилась передающая станция. В ноябре того же 1902 года была устроена официальная радиосвязь между США и Англией. Президент Рузвельт и король Эдуард VIII обменялись приветственными радиограммами. А в октябре 1907 года фирма Маркони открыла для широкой публики первую в истории радиотелеграфную станцию, передающую сообщения из Европы в Америку. Интерес к этой новинке оказался огромным — в первый же день было передано 14 тысяч слов.


База Знаний.




levnmr

Метки:  

Понравилось: 3 пользователям

100 великих изобретений.64. КИНЕМАТОГРАФ

Среда, 10 Августа 2016 г. 18:03 + в цитатник

levnmr


100 великих изобретений.


64.КИНЕМАТОГРАФ



Дорогие друзья!
В этом посте и в последующих постах я хочу познакомить вас с историей развития человечества как историей мировых изобретений



64.КИНЕМАТОГРАФ

Кинематограф, в том виде, в каком он появился в конце XIX века, стал конечной точкой длинного пути исканий, по которому в разное время шли многие изобретатели. У них у всех была одна и та же мечта — создать такое устройство, которое могло бы запечатлеть, а потом воспроизвести движение. Задача эта оказалась очень непростой. Даже сегодня непосвященный человек встанет перед ней в тупик. Допустим, кто-то поднимает руку. В своем движении снизу вверх рука проходит через бесконечное множество промежуточных положений. Неужели, для того чтобы показать это простое движение, надо зафиксировать их все? К счастью, в этом нет необходимости. Человеческий глаз обладает способностью схватывать и сохранять в течение некоторого времени (около 1/14 секунды) полученное им восприятие, даже после того когда вызвавшая это восприятие картина исчезла. Именно поэтому мы не видим при быстром вращении велосипедного колеса каждую его спицу (они сливаются перед нашим взором в сплошной круг). Или другой пример — если в темноте кто-то быстро водит из стороны в сторону горящим угольком, мы не можем заметить, где в каждый данный момент находится этот уголек, потому что все его промежуточные положения сливаются в нашем восприятии в одну огненную полосу. Получается так, что при быстром движении какого-либо объекта наш глаз не замечает всех промежуточных положений — на сетчатке успевает запечатлеться всего около 14 моментальных изображений в секунду, и эти изображения сливаются между собой в движущуюся картину. В определенном смысле, это недостаток нашего глаза, мешающий ему в некоторых случаях верно отражать действительность. Но именно благодаря этому недостатку нашему восприятию стали доступны такие зрелищные искусства, как мультипликация, кинематограф или телевидение. Итак, для того чтобы зафиксировать движение, вовсе нет необходимости отмечать каждое из промежуточных положений движущегося объекта. Достаточно делать каждую секунду всего 12-14 таких запечатлений, а затем прокручивать их с такой же скоростью. Из сказанного видно, что искусство кинематографа фактически состоит из двух частей. Сначала надо запечатлеть движение (для чего необходимо сделать серию моментальных снимков отдельных его фаз), а потом надо суметь спроецировать эти моментальные картины на экран таким образом, чтобы зритель видел перед собой изображение движущегося объекта. И то и другое получилось не сразу. Понадобились усилия многих изобретателей, прежде чем были разрешены все возникшие на этом пути трудности.

Первые опыты по проецированию изображений были сделаны еще в древности. В 1646 году немецкий иезуит Афанасиус Кирхер обобщил в своей работе «Великие искусства света и теней» весь накопленный в этой области опыт и описал принцип действия магического фонаря. Волшебный фонарь служил для проецирования через систему линз на белую поверхность (экран) увеличенного изображения какого-нибудь небольшого предмета, чаще всего прозрачной пластинки с нанесенным на ней рисунком. (Каждому хорошо известен принцип действия фильмоскопа — современной разновидности волшебного фонаря.) Магический фонарь можно считать первым прообразом кинематографа, в котором еще нет передачи движения.

Это искусство было освоено лишь в первой трети XIX века. В 1833 году профессор практической геометрии австриец Симон Штампфер изобрел занятную игрушку — стробоскоп. Этот прибор представлял собой два диска, вращавшихся на одной общей оси. На одном диске, как на циферблате часов, рисовались фигурки в различных фазах какого-либо повторяющегося процесса, например, отдельные положения шагающего человека. Еще один диск, скрепленный с первым, имел радиальные щели, через которые можно было видеть расположенные за ними картинки. При быстром вращении дисков зритель, глядевший в смотровое окошко, видел последовательно на короткое мгновение каждую из картинок, но это разделенное по времени на отдельные фазы движение воспринималось им в виде слитного образа, совершающего непрерывное движение.

В 1853 году австрийский капитан-артиллерист барон Франц фон Ухатиус придумал проекционный стробоскоп — аппарат для показа живых изображений, соединявший в себе стробоскопический круг Штампфера и волшебный фонарь Кирхера. Значение его изобретения состояло в том, что теперь можно было видеть движущиеся картины на экране. Созданный Ухатиусом стробоскоп имел до 100 изображений, мелькавших в течение 30 секунд, то есть за одну секунду сменялось три-четыре изображения. Для каждого из них был устроен свой объектив. Источник света устанавливался таким образом, что пластинки с картинками, расположенные по краю колеса, одна задругой проходили перед ним. Этот прибор получил потом широкое распространение во многих странах под названием «живых картин». В 1869 году американский изобретатель Браун усовершенствовал проектор Ухатиуса, взяв в качестве источника света мощную дуговую электрическую лампу.

Большим недостатком проекционных стробоскопов была громоздкость. Места они занимали много, а на демонстрацию их изображений уходило меньше минуты. Тем не менее «живые картины» в течение нескольких десятилетий оставались любимым и популярным зрелищем. Лишь в последней четверти XIX столетия им на смену пришли более совершенные проекторы, в которых использовалась прозрачная целлулоидная пленка, намотанная на барабан. В 1888 году француз Эмиль Рейно создал «Оптический театр», представлявший собой аппарат для проекции непрерывно движущихся персонажей. Он имел следующее устройство. Персонажи были нарисованы на пленке. Демонстратор вращал барабан с помощью двух ручек. Изображения на пленке проходило мимо фонаря и проецировалось на наклонное зеркало, которое уже отражало его на просвечивающийся экран в театральном зале. Другой аппарат одновременно проецировал на экран рисованную декорацию, на фоне которой появлялись персонажи с изменяющимися позами, нарисованные на ленте. Длительность сеанса составляла от 15 до 20 минут.

«Оптический театр» Рейно демонстрировал уже не просто движение. Его герои разыгрывали пантомимы и сценки. Самая длинная его пленка длиной 36 м содержала 500 изображений, прокручивавшихся в течение 15 минут Комедия Рейно «Вокруг кабины», созданная в 1894 году, выдержала 10 тысяч сеансов, что говорит об огромном интересе современников к этому изобретению, которое можно считать прообразом современной мультипликации.

Итак, к концу 80-х годов XIX века техника проецирования изображений достигла больших успехов в передаче движения. Однако показать изображение было проще, чем запечатлеть его. Теперь посмотрим, какие достижения имелись в этой второй области.

Впервые идею кинематографа развил Томас Дю Мон, который в 1859 году получил патент на многообъективную камеру, предназначенную для съемки отдельных фаз движения. Давая описание действия своего скоростного (или, как стали говорить позже, хронофотографического) аппарата, Дю Мон показал очень тонкое понимание сути происходящего процесса. Главная идея его конструкции заключалась в следующем: 12 светочувствительных пластин, прикрепленных к бесконечной ленте, последовательно проходили позади объектива, останавливаясь перед ним на очень короткое время. Одновременно с остановкой ленты затвор открывался и пропускал свет на фотографическую пластинку (задача затвора — открывать и закрывать окошечко объектива, оставляя его открытым лишь строго определенное время). Механизм ленты был связан с затвором, так что остановка пленки и открывание затвора совпадали с математической точностью.

Увы, в действительности аппарат Дю Мона далеко не соответствовал своему описанию и снимать им движение было совершенно невозможно. Но, несмотря на это, Дю Мона справедливо считают одним из предтеч кинематографа — соображения, высказанные в его патенте, были очень глубоки, и он совершенно правильно описал принцип действия киносъемочного аппарата будущего. Однако для того чтобы его камера стала реальностью, Дю Мону не хватало по крайней мере четырех вещей. Прежде всего, светочувствительность современных ему фотопластинок была явно недостаточной для скоростной съемки. Для получения хороших качественных снимков их надо было подвергать действию света в течение нескольких секунд, в то время как при съемке движения выдержка (то есть время, которое пластинка находится под воздействием света) должна была исчисляться десятыми и сотыми долями секунды. Во-вторых, не было еще такого совершенно необходимого для хронофотографической съемки устройства, как моментальный автоматический затвор, который позволил бы делать снимки с очень короткой выдержкой (пока выдержка исчислялась секундами, открывать и закрывать объектив можно было вручную, но при съемке со скоростью 12-14 кадров в секунду это совершенно невозможно). В третьих, сам способ съемки на фотопластинках явно не подходил для хронофотографии; необходим был новый носитель для светочувствительного слоя — фотопленка, которую можно было проматывать с необходимой скоростью. И, наконец, еще не был изобретен сам механизм движения этой пленки. Из описания Дю Мона видно, что пленка должна была не просто проходить позади объектива (что было бы несложно устроить), но делать короткие моментальные остановки, причем в строго определенное время, то есть двигаться скачкообразно. Изобретение этого скачкового механизма оказалось одной из самых трудных задач в истории создания кинематографа.

В последующие десятилетия все перечисленные проблемы были разрешены одна задругой. Ричард Мэддокс в 1871 году разработал сухобромжелатиновый фотографический процесс (усовершенствовав его в 1878 году), который давал возможность сократить выдержку при съемке до 1/200 секунды. Это открытие позволило приступить к фотографированию движения. Считается, что начало хронофотографии положили опыты американского фотографа Эдуарда Мюйбриджа. Поводом для этого послужила история одного пари. В 1872 году миллионер Стенфорд, большой любитель и знаток лошадей, поспорил со своими друзьями, которые не верили, что скаковая лошадь во время своего движения поднимает все четыре ноги. Чтобы уверить их в обратном, Стенфорд пригласил Мюйбриджа и поручил ему заснять все фазы движения лошади. Задача была далеко не простая. Чтобы исполнить поручение, Мюйбридж установил вдоль скаковой дорожки несколько фотокамер, затворы которых соединил с протянутыми поперек дорожки нитками. Пробегая мимо камеры, лошадь рвала нитки и делала снимок. В результате многих опытов Мюйбриджу удалось получить несколько удачных фотографий, на которых были сняты отдельные фазы движения лошади. Между прочим, оказалось, что Стенфорд совершенно прав — лошадь действительно при переходе в галоп отталкивалась от земли всеми ногами и как бы взлетала в воздух. Миллионер выиграл свое пари, а Мюйбридж продолжил начатое дело и вскоре прославился на весь мир своими замечательными снимками движущихся объектов. Позднее, сделав соответствующий подбор, Мюйбридж наклеивал фотографии на стробоскоп, вращая который можно было наблюдать, например, акробата, делающего прыжок через голову, бег оленя, скачку лошадей и тому подобные сюжеты.

Таковы были первые шаги моментальной фотографии. Несовершенство техники создавало для любителей этого вида фотоискусства множество затруднений, ведь снять само движение было нельзя. Тогдашние фотоаппараты давали возможность снимать только тот предмет, который находился непосредственно перед объективом, то есть двигавшийся по известной линии. Только в этом случае можно было расставить вдоль этой линии несколько фотокамер, как это делал Мюйбридж, использовавший иногда до нескольких десятков фотоаппаратов. Это обстоятельство чрезвычайно сужало возможности хронофотографии В 1882 году французский физиолог Этьен Марей, изучавший полет птиц и насекомых, придумал, как выйти из этого затруднения: он создал специальное фотографическое ружье, позволявшее со значительной быстротой снимать отдельные последовательные фазы непрерывного движения. В ружье помещался передвигающий механизм, похожий на часовой. При нажимании курка механизм начинал вращать пластинку, на которой за секунду делалось 12 снимков. Таким образом Марей снимал полет птиц. Он был первым, кто разрешил проблему запечатления движения одним аппаратом.

Съемка на пластинку была сложным и трудоемким делом. Поэтому крупным событием в истории фотографии и значительным шагом на пути к созданию кинематографа стало изобретение фотопленки. Еще в 1877 году выдающийся польский фотограф Лев Варнерке (большая часть его жизни прошла в России и Англии) изобрел первый в мире роликовый фотоаппарат с бромсеребряной коллоидной бумажной лентой. В 1886 году французский фотограф Огюстин Пренс собрал хронофотографический аппарат с 16-ю объективами, приспособленный для съемки последовательных фаз движения. Здесь впервые в истории хронофотографии была применена светочувствительная бумажная лента, которая наматывалась на барабан точно так же, как это было в фотоаппарате с роликами, проходила позади объектива и наматывалась на другой барабан. 16 объективов располагались в четыре ряда, и каждый имел свой затвор. Пренсу также удалось осуществить проецирование заснятого изображения на экран. (В главе, посвященной фотографии, был подробно описан процесс получения позитивов и негативов, поэтому здесь мы не будем останавливаться на нем. Отметим только, что ленты для хронофотографических аппаратов (как позже и для киноаппаратов) приготовлялись точно так же, как в обыкновенной фотографии, то есть сначала получали негатив (изображение с обратным расположением света и тени), а потом с него на другую ленту печатали позитив. Но из-за того, что лента имеет большую длину, сама технология обработки довольно сильно отличалась от обычной фотографии.) Пренс был первым, кто воплотил в жизнь идею кинематографа — он мог не только снимать движение, но и проецировать его на экран. Но вся его аппаратура была еще очень примитивной. Проекционный аппарат имел тоже 16 объективов. Для перематывания ленты Пренс придумал прорезать по ее краю специальные отверстия — перфорации, в которые попадали зубчики колеса лентопротяжного механизма. Однако бумага, как уже говорилось прежде, из-за своей грубой непрозрачной структуры была неподходящим материалом для фотографии. К тому же при перемотке она часто рвалась. Для фотопленки нужен был гибкий, прочный и в то же время совершенно прозрачный материал. Именно такими свойствами обладал целлулоид — одна из первых в истории пластмасс, синтезированная в 1868 году американским химиком Хайетом. В 1884 году Джон Карбут стал изготовлять целлулоидные фотопластинки, а с 1889 года Джордж Истмэн стал применять в фотоаппаратах гибкую целлулоидную фотопленку.

После этого хронофотография стала развиваться быстрыми темпами. В 1888 году немецкий фотограф Оттомар Аншютц изобрел моментальный шторный затвор, который мог снимать с выдержкой до одной тысячной секунды. Введение в практику этого затвора чрезвычайно облегчило скоростную съемку. Теперь не было необходимости создавать сложные камеры с 12-16 объективами, а можно было обойтись только одним. В 1888 году Пренс получил английский патент на аппарат с одним объективом и бумажной лентой (он вскоре заменил ее целлулоидной). Этот аппарат делал от 10 до 12 изображений в секунду. В том же году Марей отказался от подвижной жесткой пластинки и стал использовать длинную бумажную ленту со светочувствительным слоем, позволявшую снимать отдельные медленные движения. В 1889 году Пренс создал проекционный аппарат с одним объективом и дуговой лампой. Итак, в конце 80-х годов почти все трудности, стоявшие в свое время перед Дю Моном, были благополучно разрешены. Оставалась последняя — создание скачкового механизма, поскольку равномерное движение ленты при съемке не давало качественного изображения движения.

Первый в истории примитивный скачковый механизм был придуман в Англии. Английский фотограф Уильям Фризе-Грин работал над той же проблемой, что Марей и Пренс. Подобно им он сначала применял бумажную светочувствительную ленту, которую снабжал по краям перфорацией. Так как бумажная лента рвалась, то в своем хронофотографическом аппарате в 1889 году Фризе-Грин впервые применил недавно появившуюся перфорированную целлулоидную пленку. Тогда же он включил в конструкцию аппарата скачковый механизм.

Пленка у Фризе-Грина поступала с подающего барабана на приемный. Последний, с помощью рукоятки, вращаемой рукой, приводился в непрерывное движение. Плечо, несущее вращающийся ролик, получало движение посредством спирального кулачка и принимало положение, показанное пунктирными линиями; при своем движении оно тянуло вниз пленку, которая затем оставалась неподвижной, пока ролик отходил под действием пружины. Одновременно с отходом плеча затвор открывался посредством такого же спирального кулачка. Последний был сконструирован на валу, приводимом в движение рукой. Каждый оборот, таким образом, экспонировал отдельный кадр пленки. Уже в 1889 году Фризе-Грин снял в Гайд-парке свой первый фильм и продемонстрировал его на фотографическом съезде в Таунн-холле. В 1890 году состоялась публичная демонстрация его фильмов в Королевском фотографическом обществе. Съемочная камера Фризе-Грина с перфорированной целлулоидной лентой имела все элементы кинематографа, кроме технически совершенного скачкового механизма прерывистого движения пленки. Однако его аппараты были очень сложны и в этом виде не могли получить широкого распространения. Более того, за пределами Англии о его изобретении почти ничего не было известно.

В середине 90-х годов сразу несколько изобретателей приблизились к созданию кинематографа. В 1893 году создал свой кинетоскоп Эдисон. Этот прибор представлял собой ящик с окуляром, через который смотрел зритель. В окуляр было видно матовое стекло, на которое снизу проецировалось заснятое на пленку изображение. В том же году Эдисон организовал свою студию, в которой были сняты первые на американском континенте фильмы — коротенькие, на 20-30 секунд демонстрации. Длина ленты не превышала 15 м. В этой студии снимались известные танцовщицы, акробаты и дрессированные животные. В апреле 1894 года в Нью-Йорке на Бродвее был открыт первый салон кинетоскопов. Заплатив 25 центов за вход, зрители шли вдоль ряда кинетоскопов и смотрели в окуляры, а служащий включал кинетоскопы один за другим. Вскоре Эдисон сделал кинетоскоп автоматическим — автомат начинал действовать после опускания в щель монеты достоинством в 5 центов. Без сомнения, кинетоскоп являлся выдающимся техническим достижением. Но все же это еще не был кинематограф. Скачкового механизма он не имел. Между тем главной частью кинематографа, «сердцем» киносъемочного и кинопроекционного аппарата являлся именно скачковый механизм для быстрой, прерывистой смены изображений. Изобретение совершенного скачкового механизма, который позволил с установленной частотой осуществлять одновременно быстрое прерывистое передвижение отдельных подвижных изображений и их мгновенную остановку, стало тем событием, которое и ознаменовало рождение кинематографа.

В 1893 году Марей создал новый хронофотографический аппарат с целлулоидной пленкой. Пленка здесь двигалась прерывисто, делая мгновенные остановки с частотой 20 отдельных снимков в секунду. Однако механизм прерывистого движения был крайне примитивным. Он состоял из электромагнита и прижимных валиков. В момент срабатывания затвора валик притягивался и останавливал пленку. Действие этого механизма было очень грубым, поэтому аппарат Муррея нельзя считать технически удовлетворительным. Тем не менее в том же году Марей снял несколько замечательных фильмов о движении живых существ.

В 1894 году Жорж Демени создал первый совершенный киноаппарат со скачковым механизмом. Этот скачковый механизм представлял собой диск с «пальцем», вращающимся по часовой стрелке.

В 1895 году свой кинопроектор и киноаппарат запатентовали братья Огюст и Луи Люмьеры, применившие в качестве скачкового механизма грейфер («вилку»). Летом и осенью того же года они сняли десять коротких фильмов по 16 м, которые явились основой для коммерческих сеансов конца 1895 — начала 1896 годов. В декабре 1895 года был открыт первый кинотеатр в подвале «Гран-кафе» на бульваре Капуцинов в Париже. Если судить строго фактически, то грейфер — это единственное оригинальное изобретение Люмьеров, притом не самое удачное (уже в 1896 году грейфер был заменен другим, более совершенным скачковым механизмом — мальтийским крестом). Однако именно на их аппарат выпала самая громкая слава. В течение первой половины 1896 года кинематограф Люмьеров демонстрировался во всех европейских столицах и имел колоссальный успех.

В апреле 1896 года Виктор Контенсуза и Бюнцли первыми применили в киноаппаратах четырехлопастный мальтийский крест — тот тип скачкового механизма, который преобладает в современных киноаппаратах.

Контенсуза имел небольшое предприятие в Париже и был опытным механиком. Он сконструировал несколько киноаппаратов для знаменитой кинофирмы «Патэ». Четырехлопастная мальтийская система состоит из ведущего диска, который имеет один палец (эксцентрик), и ведомого диска, снабженного четырьмя прорезями. При движении палец ведущего диска входит в прорезь ведомого диска и поворачивает его на 90 градусов. При этом зубчатый барабан поворачивается на 1/4 оборота. Ведомый диск за время одного оборота делает четыре остановки, причем продолжительность остановки в три раза больше времени движения. Четырехлопастный крест связан со скачковым зубчатым барабаном, передвигающим пленку. Стояние кадра определяется временем, необходимым для поворота ведущего диска на 270 градусов. После этого палец снова входит в следующую прорезь четырехлопастного креста и снова поворачивает его на 1/4 оборота. Таким образом происходит прерывистое движение пленки.

С самого своего появления кинематограф приобрел огромную популярность. Сравнительная дешевизна билетов и стремительный рост сети кинотеатров выдвинули его на первое место среди всех общедоступных развлечений. Ранний кинематограф был еще весьма несовершенным: картины сильно мигали, изображение прыгало по экрану, часто оно было довольно темно, но все же публика приходила от этих фильмов в восторг и валом валила в кинотеатры. Коммерческий успех нового изобретения превзошел все ожидания. (Капитал одной из первых кинофирм «Патэ» всего за 14 лет вырос в 30 раз — с 1 млн до 30 млн франков.)

База Знаний.




levnmr

Метки:  

Понравилось: 4 пользователям

100 великих изобретений.63. БУРЕНИЕ НА НЕФТЬ

Среда, 10 Августа 2016 г. 17:56 + в цитатник

levnmr


100 великих изобретений.


63.БУРЕНИЕ НА НЕФТЬ



Дорогие друзья!
В этом посте и в последующих постах я хочу познакомить вас с историей развития человечества как историей мировых изобретений



63.БУРЕНИЕ НА НЕФТЬ

До появления керосина во многих странах основным средством освещения служили восковые свечи и китовый жир. Ради последнего были истреблены сотни тысяч китов. Вскоре киты стали редкостью, и появилась необходимость в замене китового жира каким-нибудь другим маслом. Тогда прибегли к смеси скипидара со спиртом; делали также попытки добывать масло из угля посредством перегонки. В 1844 году американский химик Абрам Геснер получил из угля осветительное масло, которое он назвал «керосином». Но впоследствии название «керосин» закрепилось за очищенной нефтью. Способ получения керосина из нефти был открыт в 1857 году Феррисом. В отличие от сырой нефти (которую тоже пытались применять для освещения) керосин горел намного лучше, причем без копоти и чада, что и обеспечило успех новому изобретению. С этого времени темпы добычи нефти стали неуклонно возрастать.

Тогда же в Нью-Йорке было основано общество для разработки нефтяных источников в штате Пенсильвания. Добыча поначалу велась самым примитивным колодезным способом, при котором рабочие-нефтяники вырывали глубокую яму и черпали из нее нефть как воду ведрами. У одного из руководителей общества, Бисселя, вскоре явилась мысль добывать нефть при помощи буровых скважин. Идея эта кажется очень простой, однако прежде она никому не приходила в голову. Биссель узнал, что с помощью бурения уже много лет добывают воду из глубинных соляных источников (из этой воды потом выпаривали соль), причем многие из этих источников были брошены, потому что вместе с водой содержали нефть. Таким образом, можно было заключить, что нефть и вода находятся под землей поблизости друг от друга и ничего не мешает выкачивать из скважины нефть с помощью насосов точно так же, как это делали с водой. Многие, впрочем, отнеслись к этому предложению с недоверием.

Искусство бурения земли к середине XIX века прошло долгий путь развития, но в целом стояло еще на достаточно примитивном уровне. Преобладающим способом было так называемое ударное бурение, при котором скважина выдалбливалась в породе ударами клинообразного разрушающего инструмента — плоского долота или бура. Бурение происходило при этом следующим образом. Сначала выбирали место под скважину. Затем строили вышку и тщательно устанавливали направляющую трубу. Буровая вышка служила станком для подъема бура. Бурение осуществлялось ударами. На конце шеста укреплялась тяжелая головка с резцами: при помощи каната, перекинутого через блок, ее опускали, а затем снова поднимали. Силой своей тяжести она дробила породу. Чтобы скважина получила правильную форму, долото перед каждым ударом поворачивали на определенный угол. Когда бур углублялся в землю на всю свою длину, к нему прикручивали штангу длиной около 3 м. В пробуренную скважину для крепления стенок опускали железные трубы. Для извлечения раздробленных частиц породы их смачивали водой и превращали в грязь, которую периодически извлекали наверх при помощи желонки — длинного ведра с клапаном на конце. Понятно, что каждый раз для этого приходилось вынимать из скважины бурильный инструмент и развинчивать его на части. На эту работу (подъем, развинчивание и свинчивание ударного инструмента) уходило огромное количество рабочего времени. Если грунт был мягкий, за день можно было пройти до 18 м, но обычно успевали пробурить не более 3-4 м. Чем большей глубины достигал бур, тем медленнее шла работа.

В 1846 году Фовель изобрел способ промывки скважин водяной струей. Он начал употреблять полые штанги и нагнетать в них воду, которую затем выкачивали между стенок бура и скважины вместе с обломками размельченной породы. Это изобретение составило эру в истории буровой техники. При таком устройстве бурения не могло быть никогда скопления грязи на дне скважин и не было надобности в постоянном подъеме инструмента. Этим изобретением Фовеля трудности бурения были уменьшены на 9/10, и оно сразу начало бурно развиваться. Стоимость буровых работ уменьшилась в 10 раз.

В таком положении находились дела, когда Биссель решил применить буровую технику для поиска и добычи нефти. Тогда он еще не подозревал, какой переворот в экономике совершит его идея. Проведение бурения было поручено инженеру Дрейку. В марте 1858 года близ города Тайтесвилла в Пенсильвании была вырыта глубокая открытая шахта, со дна которой приступили к бурению.

История этой первой нефтяной скважины полна драматических эпизодов, Дрейку с самого начала приходилось преодолевать множество затруднений из-за недостатка нужных людей и инструментов. Никто не питал доверия к человеку, который хотел добывать нефть из водоподъемной шахты. Наконец Дрейк нашел опытного бурильщика, который занимался своим делом уже в течение 30 лет. Тот взялся довести скважину до конца. Но едва начав работу, бурильщики наткнулись на водяной пласт, причем вода хлынула из скважины с такой силой, что им пришлось в панике покинуть шахту — иначе они бы просто утонули. Чтобы поправить положение, Дрейк велел провести через водоносный слой и песок большую железную трубу, после чего бурение могло продолжаться дальше. В конце апреля 1859 года, когда бурильщики достигли глубины в 21 м, из скважины пошла нефть. Таким образом, опыт удался. Когда установили насос, он стал выкачивать по 8 бочек нефти в день. Спустя неделю это количество выросло до 20 бочек. В конце октября того же года на первой скважине случился пожар и весь пункт сгорел. Однако предприниматели не отчаялись и установили на том же месте новую вышку, которая с первого дня стала давать 30 бочек в день — количество, остававшееся в течение многих лет непревзойденным.

Удачный опыт Дрейка положил начало нефтяной промышленности США. Известие об успехе его нефтяных установок быстро распространилось по всей стране. Биссель арендовал новые нефтяные участки. Другие предприниматели последовали его примеру. Вскоре начался настоящий нефтяной бум. Нефтедобыча оказалась прибыльнейшим предприятием. Бывало, что земельные участки, стоившие накануне 30-40 долларов, за несколько дней взлетали в цене до 10 тысяч долларов. Это привлекло в нефтяной бизнес множество спекулянтов и капиталистов. Огромная концентрация капиталов в этой сфере позволила творить чудеса. Со сказочной быстротой прокладывались нефтепроводы и железные дороги, как бы из-под земли в пустыне возникали города, на нефтяных полях как грибы вырастали тысячи нефтяных вышек.

Техника нефтедобычи быстро совершенствовалась. С 1858 года при ударном бурении для вытаскивания бура стали употреблять паровую машину. Но еще большее значение имел переход к более производительному роторному (вращательному) бурению. При этом способе бурения цилиндрическое отверстие как бы высверливалось непрерывно вращающимся долотом, а раздробленные частицы в процессе бурения выносились на поверхность постоянно циркулирующей струей промывочной жидкости, беспрерывно закачиваемой в скважину специальным насосом. В 1889 году Чепмен изобрел установку для роторного бурения, устройство которой принципиально не изменилось до сегодняшнего дня. Ротор (вращающий механизм) получал здесь движение от мощного двигателя внутреннего сгорания и передавал его ведущей трубе, а через нее — бурильным трубам и долоту. Сначала установку Чепмена использовали для бурения на воду. В 1901 году на ней была пробурена первая нефтяная скважина.


База Знаний.




levnmr

Метки:  

Понравилось: 3 пользователям

100 великих изобретений.62.Электролиз Аллюминия

Среда, 10 Августа 2016 г. 17:51 + в цитатник

levnmr


100 великих изобретений.


62. ЭЛЕКТРОЛИЗ АЛЮМИНИЯ



Дорогие друзья!
В этом посте и в последующих постах я хочу познакомить вас с историей развития человечества как историей мировых изобретений



62. ЭЛЕКТРОЛИЗ АЛЮМИНИЯ


Современную жизнь невозможно представить без алюминия. Этот блестящий легкий металл, прекрасный проводник электричества, получил в последние десятилетия самое широкое применение в различных отраслях производства. Между тем известно, что в свободном виде алюминий не встречается в природе, и вплоть до XIX века наука даже не знала о его существовании. Только в последней четверти XIX века была разрешена проблема промышленного производства металлического алюминия в свободном виде. Это стало одним из крупнейших завоеваний науки и техники этого периода, значение которого мы, может быть, еще не оценили до конца.

По содержанию в земной коре алюминий занимает первое место среди металлов и третье среди других элементов (после кислорода и кремния). Земная кора на 8, 8% состоит из алюминия (отметим для сравнения, что содержание железа в ней — 4, 2%, меди — 0, 003%, а золота — 0, 000005%). Однако этот химически активный металл не может существовать в свободном состоянии и встречается только в виде различных и очень разнообразных по своему составу соединений. Основная их масса приходится на оксид алюминия (Al2O3). Это соединение каждый из нас встречал не один раз — в обиходе оно называется глиноземом, или просто глиной. Глина примерно на треть состоит из оксида алюминия и является потенциальным сырьем для его производства. Вся трудность состоит в том, чтобы восстановить алюминий (отнять у него кислород). Химическим путем добиться этого чрезвычайно сложно, так как связь двух элементов здесь очень прочная. Уже первое знакомство с алюминием наглядно продемонстрировало все сложности, которые ожидали ученых на этом пути.

В 1825 году датскому физику Гансу Эрстеду впервые удалось получить металлический алюминий в свободном состоянии из его оксида. Для этого Эрстед прежде всего смешал глинозем с углем, раскалил эту смесь и пропустил через нее хлор. В результате получился хлористый алюминий (AlCl3). В то время уже было известно, что химически более активные металлы способны вытеснять менее активные из их солей. Эрстед подверг хлористый алюминий действию калия, растворенного в ртути (амальгамой калия) и получил амальгаму алюминия (при быстром нагревании хлористого алюминия с амальгамой калия образовался хлористый калий, алюминий же ушел в раствор). Подвергнув эту смесь дистилляции, Эрстед выделил небольшие слитки алюминия. Несколько другим способом алюминий получил в 1827 году немецкий химик Велер, который пропускал пары хлористого алюминия над металлическим калием (при этом, как и в реакции Эрстеда химически, более активный калий вытеснял алюминий и сам соединялся с хлором). Но оба способа не могли применяться в промышленности, так как для восстановления алюминия здесь использовался очень дорогой калий.

Позже французский физик Сен-Клер-Девилль разработал другой химический процесс получения алюминия, заменив калий более дешевым, но все же достаточно дорогим натрием. (Суть этого способа заключалась в том, что хлористый алюминий нагревали с натрием, который вытеснял алюминий из соли, заставляя его выделяться в виде небольших корольков.) На протяжении нескольких десятилетий алюминий получали именно таким образом. Исследуя свойства алюминия, Девилль пришел к заключению, что тот может в будущем иметь огромное значение для техники. В своем докладе Французской академии наук он писал: «Этот металл, белый и блестящий, как серебро, не чернеющий на воздухе, поддающийся переплавке, ковке и протяжке, обладающий к тому же замечательной легкостью, может оказаться очень полезным, если удастся найти простой способ его получения. Если далее вспомнить, что этот металл чрезвычайно распространен, что его рудой является глина, то можно лишь пожелать, чтобы он нашел широкое применение». Первые слитки алюминия, полученные Девиллем, демонстрировались на всемирной Парижской выставке в 1855 году и вызвали к себе живейший интерес.

В 1856 году на заводе братьев Тисье в Руане Девилль организовал первое промышленное предприятие по выпуску алюминия. При этом стоимость 1 кг алюминия сначала равнялась 300 франкам. Через несколько лет удалось снизить продажную цену до 200 франков за 1 кг, но все равно она оставалась исключительно высокой. Алюминий в это время употребляли как полудрагоценный металл для производства различных безделушек, причем он приобрел в этом виде даже некоторую популярность из-за своего белого цвета и приятного блеска. Впрочем, по мере совершенствования химических методов выделения алюминия цена на него с годами падала. Например, завод в Олбери (Англия) в середине 80х гг. выпускал до 250 кг алюминия в день и продавал его по цене 30 шиллингов за кг, иными словами, цена его за 30 лет снизилась в 25 раз.

Уже в середине XIX века некоторые химики указывали на то, что алюминий можно получать путем электролиза. В 1854 году Бунзен получил алюминий путем электролиза расплава хлористого алюминия.

Почти одновременно с Бунзеном получил электролитическим путем алюминий Девилль. Аппарат Девилля состоял из фарфорового тигля P, вставленного в пористый глиняный тигель H и снабженного крышкой D, в которой имелась щель для ввода платинового электрода K и большое отверстие для пористого глиняного сосуда R. В последнем был помещен угольный стержень A, являвшийся положительным электродом. Тигель и глиняный сосуд заполнялись до одного уровня расплавленным двойным хлоридом алюминия и натрия (двойной хлорид получали путем смешивания двух частей сухого хлорида алюминия и поваренной соли). После погружения электродов уже при небольшом токе в расплаве начиналось разложение двойного хлорида, и на платиновой пластинке выделялся металлический алюминий. Однако в то время нельзя было и думать о том, чтобы поддерживать соединения в расплавленном состоянии, пользуясь только нагреванием при прохождении тока. Приходилось поддерживать необходимую температуру другим способом извне. Это обстоятельство, а также то, что электроэнергия в те годы стоила очень дорого, помешало распространению данного способа производства алюминия. Условия для его распространения возникли только после появления мощных генераторов постоянного тока.

В 1878 году Сименс изобрел электрическую дуговую печь, применявшуюся прежде всего при плавке железа. Она состояла из угольного или графитового тигля, являвшегося одним полюсом. Вторым полюсом служил расположенный сверху угольный электрод, который перемещался внутри тигля в вертикальной плоскости для регулирования электрического режима. При заполнении тигля шихтой она нагревалась и расплавлялась или электрической дугой или за счет сопротивления самой шихты при прохождении через нее тока. Никаких внешних источников тепла для печи Сименса не требовалось. Создание этой печи стало важным событием не только для черной, но и для цветной металлургии.

Теперь все условия для электролитического способа производства алюминия были налицо. Дело оставалось за разработкой технологии процесса. Вообще говоря, алюминий можно получать непосредственно из глинозема, но трудность заключалась в том, что оксид алюминия очень тугоплавкое соединение, которое переходит в жидкое состояние при температуре около 2050 градусов. Для того чтобы нагреть глинозем до такой температуры и затем поддерживать ее во время реакции, требовалось огромное количество электроэнергии. В то время этот способ казался неоправданно дорогим. Химики искали иной путь, пытаясь выделить алюминий из какого-нибудь другого менее тугоплавкого вещества. В 1885 году эту задачу независимо друг от друга разрешили француз Эру и американец Холл.

Любопытно, что обоим в момент, когда они совершили свое выдающееся открытие, было по 22 года (и тот и другой родились в 1863 г.). Эру еще с 15 лет, после того как познакомился с книгой Девилля, постоянно думал об алюминии. Основные принципы электролиза он разработал, еще будучи студентом, в 20 лет. В 1885 году после смерти отца Эру унаследовал небольшую кожевенную фабрику близ Парижа и немедленно принялся за опыты. Он приобрел электрогенератор Грамма и сначала попробовал разложить электрическим током водные растворы солей алюминия. Потерпев на этом пути неудачу, он решил подвергнуть электролизу расплавленный криолит — минерал, в состав которого входит алюминий (химическая формула криолита Na3AlF6). Опыты Эру начал в железном тигле, который служил катодом, а анодом являлся опущенный в расплав угольный стержень. Поначалу ничего не обещало успеха. При пропускании тока железо тигля вступило в реакцию с криолитом, образовав легкоплавкий сплав. Тигель расплавился, и содержимое его вылилось наружу. Никакого алюминия Эру таким путем не получил. Однако криолит представлял собой очень заманчивое сырье, поскольку плавился при температуре всего 950 градусов. Эру пришла мысль, что расплав этого минерала можно использовать для растворения более тугоплавких солей алюминия. Это была очень плодотворная идея. Но какую соль избрать для опытов? Эру решил начать с той, которая давно уже служила сырьем для химического производства алюминия — с двойного хлорида алюминия и натрия. И тут при проведении эксперимента произошла ошибка, которая и привела его к замечательному открытию. Расплавив криолит и добавив к нему двойной хлорид алюминия и натрия, Эру неожиданно заметил, что угольный анод начал быстро обгорать. Объяснение этому могло быть только одно — в ходе электролиза на аноде стал выделяться кислород, вступавший в реакцию с углеродом. Но откуда мог взяться кислород? Эру внимательно изучил все купленные реактивы и тут обнаружил, что двойной хлорид разложился под действием влаги и превратился в глинозем. Тогда все происшедшее стало ему понятно: оксид алюминия (глинозем) растворился в расплавленном криолите и молекула Al2O3 распалась на ионы алюминия и кислорода. Далее в ходе электролиза отрицательно заряженные ионы кислорода отдавали аноду свои электроны и восстанавливались в химический кислород. Но в таком случае, какое вещество восстанавливалось на катоде? Им мог быть только алюминий. Поняв это, Эру уже намеренно добавил глинозем к расплаву криолита и таким образом получил на дне тигля корольки металлического алюминия. Так был открыт применяющийся по сей день способ получения алюминия из глинозема, растворенного в криолите. (Криолит не участвует в химической реакции, его количество в ходе электролиза не уменьшается — он используется здесь только как растворитель. Процесс идет следующим образом: к расплаву криолита периодически добавляют порциями глинозем; в результате электролиза на аноде выделяется кислород, а на катоде — алюминий.) На два месяца позже точно такой же способ производства алюминия открыл американец Холл.

На свое изобретение Эру в апреле 1886 года получил первый патент. В нем он еще не отказался от внешнего нагревания ванны с электролитом для поддержания нужной температуры расплава. Но уже в следующем году он взял второй патент на способ получения алюминиевой бронзы, в котором отказался от внешнего нагрева и писал, что «электрический ток производит достаточное количества тепла для того, чтобы глинозем поддерживать в расплавленном состоянии».

Поскольку никто во Франции не заинтересовался его открытием, Эру уехал в Швейцарию. В 1887 году компания «Сыновья Негер» подписала с ним контракт о реализации его изобретения. Вскоре было основано Швейцарское металлургическое общество, которое на заводе в Нейгаузене развернуло производство сначала алюминиевой бронзы, а потом чистого алюминия.

Промышленную установку для электролиза алюминия, также как и всю технологию производства, разработал Эру. Печь представляла собой железный ящик, изолированно установленный на земле. Поверхность ванны изнутри была покрыта толстыми угольными пластинами, которые являлись отрицательным электродом (катодом). Сверху в ванну опускался положительный электрод (анод), который представлял собой пакет угольных стержней. Электролиз происходил при очень сильном токе (порядка 4000 ампер), но при небольшом напряжении (всего 12-15 вольт). Большая сила тока, как уже говорилось в предыдущих главах, приводила к значительному повышению температуры. Криолит быстро плавился, и начиналась электрохимическая реакция восстановления, в ходе которой металлический алюминий собирался на угольном полу ванны.

Уже в 1890 году завод в Нейгаузене получил свыше 40 тонн алюминия, а вскоре стал выпускать по 450 тонн алюминия в год. Успехи швейцарцев вдохновили французских промышленников. В Париже образовалось электротехническое общество, которое в 1889 году предложило Эру стать директором вновь основанного алюминиевого завода. Через несколько лет Эру основал в разных частях Франции, где имелась дешевая электрическая энергия, еще несколько алюминиевых заводов. Цены на алюминий постепенно упали в десятки раз. Медленно, но неуклонно этот замечательный металл стал завоевывать свое место в человеческой жизни, сделавшись вскоре столь же необходимым, как известные с глубокой древности железо и медь.

База Знаний.




levnmr

Метки:  

Понравилось: 3 пользователям

100 великих изобретений.61. ГРАММОФОН

Среда, 10 Августа 2016 г. 17:44 + в цитатник

levnmr


100 великих изобретений.


61. ГРАММОФОН



Дорогие друзья!
В этом посте и в последующих постах я хочу познакомить вас с историей развития человечества как историей мировых изобретений



61.ГРАММОФОН

Среди замечательных технических достижений XIX века далеко не последнее место занимает изобретение звукозаписи. Впервые устройство, позволяющее записывать звук, было создано в 1857 году Леоном Скоттом. Принцип действия его фоноавтографа был очень прост: игла, которой передавались колебания звуковой диафрагмы, вычерчивала кривую на поверхности вращавшегося цилиндра, покрытого слоем сажи. Звуковые волны в этом приборе получали как бы зримый образ, но не более того — понятно, что воспроизвести записанный на саже звук было невозможно. Следующий важный шаг на этом пути был сделан знаменитым американским изобретателем Эдисоном. В 1877 году Эдисон создал первую «говорящую машину» — фонограф, позволявшую производить не только запись, но и воспроизведение звука. О своем изобретении Эдисон рассказывал так: «Однажды, когда я еще работал над улучшением телефонного аппарата, я как-то запел над диафрагмой телефона, к которой была припаяна стальная игла. Благодаря дрожанию пластинок игла уколола мне палец, и это заставило меня задуматься. Если бы можно было записать эти колебания иглы, а потом снова провести иглой по такой записи, отчего бы пластинке не заговорить? Я попробовал сначала пропустить обыкновенную телеграфную ленту под острием телефонной диафрагмы и заметил, что получилась какая-то азбука, а потом, когда я заставил ленту с записью вновь пройти под иглой, мне послышалось, правда, очень слабо: „Алло, алло“. Тогда я решил построить прибор, который работал бы отчетливо, и дал указание моим помощникам, рассказав, что я придумал. Они надо мной посмеялись».

Принцип фонографа был в общих чертах тот же, что у телефона. Звуковые волны с помощью говорной трубы приводились к пластинке из очень тонкого стекла или слюды и резцом, прикрепленным к ней, записывались на быстро вращающийся вал, покрытый оловянной фольгой. На фольге получались следы, форма которых соответствовала колебаниям пластины и, следовательно, падающим на нее звуковым волнам. Этой полосой листового олова можно было пользоваться для получения на том же приборе тех же звуков. При равномерном вращении полосы резец, прикрепленный к пластинке проходил вдоль сделанной им ранее борозды. Вследствие этого пластинка приводилась резцом в те же самые колебания, которые она прежде сама передавала ему под действием голоса и звукового инструмента и начинала звучать подобно мембране телефона. Таким образом фонограф воспроизводил всякий разговор, пение и свист.

Первые приборы Эдисона, созданные в 1877 г., были еще очень несовершенны. Они хрипели, гнусавили, чрезмерно усиливали некоторые звуки, совсем не воспроизводили других, и вообще, больше напоминали попугаев, чем репродукторы человеческой речи. Другой их недостаток состоял в том, что звук можно было различить, лишь приложив ухо к диафрагме. Это происходило во многом из-за того, что валик двигался недостаточно ровно по поверхности, которую не могли сделать совершенно гладкой. Игла, переходя из одного углубления в другое, испытывала собственные колебания, передававшиеся в виде сильных шумов.

Эдисон упорно работал над улучшением фонографа. Особенно много проблем встретил он с воспроизведением звука "с", который никак не хотел записываться. Он сам вспоминал позже: «В течение семи месяцев я работал почти по 18-20 часов в сутки над одним словом „специя“. Сколько раз я ни повторял в фонограф: специя, специя, специя — прибор упорно твердил мне одно и то же: пеция, пеция, пеция. С ума можно было сойти! Но я не упал духом и настойчиво продолжал свою работу, пока не преодолел затруднения. Насколько трудна была моя задача, вы поймете, если я скажу, что следы, получающиеся на цилиндре в начале слова, имели в глубину не более одной миллионной доли дюйма! Легко делать удивительные открытия, но трудность состоит в усовершенствовании их настолько, чтобы они получили практическую ценность». После многих экспериментов был найден более или менее подходящий материал для валиков — сплав воска и некоторых растительных смол (этот рецепт Эдисон держал в секрете). В 1878 году он основал специальную фирму по производству фонографов. Одновременно во всех газетах была развернута широкая реклама его изобретения. Уверяли, что фонограф можно будет применять для диктовки писем, издания звуковых книг, воспроизведения музыки, изучения иностранных языков, записи телефонных сообщений и многих других целей.

Но, увы, ни одно из этих обещаний не было исполнено даже в 1889 году, когда был сконструирован новый фонограф, не имевший многих недостатков прежнего.

Принцип его действия остался прежним. Восковой цилиндр W приводился во вращение находившимся в ящике K электродвигателем с очень спокойным и равномерным ходом. Регулятор G через включение и выключение сопротивлений управлял скоростью вращения цилиндра (125 об/мин). Рычаг A, поддерживающий говорную трубку и пластинку, покоился на салазках. Эти салазки передвигались вдоль направляющего бруска F с помощью гайки с винтовой нарезкой M, которая лежала на валике главного винта, имевшего мелкую нарезку и образовывавшего ось цилиндра C. Нарезка эта представляла образцовое произведение механики и имела сто винтовых ходов на один дюйм. Два рычажка A и B служили для насаживания гайки с главного стержня. Пластинки фонографа состояли из очень тонкого стекла; из них одна имела острый резец для записи колебаний пластинки на восковом цилиндре, другая — тупой резец для воспроизведения. Третья, несколько более крепкая пластинка, была снабжена маленьким острым резцом для того, чтобы приведенные в негодность восковые цилиндры вновь обтачивать и таким образом пользоваться ими для новых записей. Для усиления звука использовалась труба с раструбом.

Пишущая часть представляла собой вделанную в металлическое кольцо круглую диафрагму, пространство над которой было закрыто крышкой с раструбом. Если говорить в этот раструб, то звуковые волны достигали диафрагмы и приводили ее в колебательное движение. Снизу к середине диафрагмы было прикреплено тонкое пишущее острие, с помощью которого вырезалась на восковой оболочке барабана бороздка, более или менее глубокая, соответственно колебаниям диафрагмы. Диафрагма со своими принадлежностями поддерживалась на рычаге, который был прикреплен к скользящему приспособлению, и вместе с последним передвигалась при вращении барабана справа налево. Чтобы это передвижение происходило согласно с вращением барабана, на скользящем приспособлении был укреплен второй рычаг, который своим концом покоился на винтовом шпинделе, налегая на него частью гайки. Таким образом, при движении шпинделя передвигалось скользящее приспособление, а так как шпиндель был соединен бесконечным шнуром с валом барабана, то скользящее приспособление и вместе с ним штифт двигались согласно с его вращением, и штифтик вырезал на восковой массе винтовую линию. Пока диафрагма не колебалась, штифтик вырезал бороздку равномерной глубины, но как скоро диафрагма начинала колебаться под влиянием звуковых волн, глубина бороздки все время то уменьшалась, то увеличивалась. Эту волнообразную полосу потом использовали для приведения в движение другой подобной диафрагмы, к которой был прикреплен скользящий по бороздке штифтик.

Однако и новый усовершенствованный фонограф не получил широкого практического применения. Кроме высокой цены, распространению его мешало практическое несовершенство. Валик не мог вместить много информации и заполнялся через несколько минут. Более или менее значительная корреспонденция требовала большого числа валиков. После нескольких прослушиваний копия разрушалась. Сама передача аппарата была далека от совершенства. Кроме того, с воскового валика невозможно было получить копии. Всякая запись была уникальной и с порчей валика пропадала навсегда.

Все эти недостатки были благополучно преодолены Эмилем Берлинером, который в 1887 году взял патент на другой звукозаписывающий прибор — граммофон. Хотя принцип устройства граммофона и фонографа был один и тот же, граммофон имел ряд существенных отличий, которые и обеспечили ему широчайшее распространение. Прежде всего, игла в записывающем аппарате Берлинера располагалась параллельно плоскости диафрагмы и чертила извилистые линии (а не борозды, как у Эдисона). Кроме того, вместо громоздкого и неудобного валика Берлинер избрал круглую пластинку.

Запись происходила следующим образом. На диск большого диаметра с бортиком устанавливали предназначенный для записи звука полированный цинковый диск. Сверху на него наливали раствор воска в бензине. Диск-ванна получал вращение от ручки через фрикционную передачу, а система шестерней и ходового винта связывала вращение диска с радиальным ходом записывающей мембраны, укрепленной на стойке. Этим достигалось движение записывающего устройства по спиралеобразной линии. Когда бензин испарялся, на диске оставался очень тонкий слой воска, и диск был готов к записи. Нанесение звуковой канавки Берлинер производил почти так же, как Эдисон, при помощи записывающей мембраны, снабженной трубкой с небольшим рупором и передававшей свои колебания иридиевому острию.

Главное достоинство записи по способу Берлинера состояло в том, что с диска можно было легко получать копии. Для этого записанный диск прежде всего погружали в водный раствор хромовой кислоты. Там, где поверхность диска была покрыта воском, кислота не оказывала на него никакого воздействия. Только в звуковых канавках, поскольку записывающее острие срезало воск до самой поверхности диска, цинк растворялся под действием кислоты. При этом звуковая канавка протравливалась до глубины около 0, 1 мм. Затем диск промывали и удаляли воск. В таком виде он уже мог служить для воспроизведения звука, но фактически являлся лишь оригиналом для изготовления медных гальванических копий.

Принцип гальванопластики был открыт в 1838 году русским электротехником Якоби. Выше уже упоминались электролиты — жидкости, проводящие через себя электрический ток. Особенностью электролитов является то, что в растворах (или расплавах) их молекулы распадаются на положительные и отрицательные ионы. Благодаря этому становится возможным электролиз — химическая реакция, которая протекает под воздействием электрического тока. Для проведения электролиза в ванну помещают металлические или угольные стержни, которые соединяют с постоянным источником тока. (Электрод, подключенный к отрицательному полюсу батареи, называют катодом, а электрод, соединенный с положительным полюсом — анодом.) Электрический ток в электролите представляет процесс движения ионов к электродам. Положительно заряженные ионы движутся к катоду, а отрицательно заряженные — к аноду. На электродах происходит реакция нейтрализации ионов, которые, отдавая лишние электроны или получая недостающие, превращаются в атомы и молекулы. К примеру, каждый ион меди получает на катод два недостающих электрона и осаждается на нем в виде металлической меди. При этом осадок дает точное рельефное изображение катода. Это последнее свойство как раз и используется при гальванопластике. С копируемых предметов снимается копия (матрица), представляющая их обратное негативное изображение. Затем копия подвешивается в качестве катода (отрицательного полюса) в гальваническую ванну. В качестве анода (положительного полюса) берется тот металл, из которого изготовлялась копия. Раствор ванны должен содержать в себе ионы того же металла.

Точно так же действовал Берлинер — он погружал цинковый диск в ванну с раствором медной соли и подключал к нему отрицательный полюс батареи. В процессе электролиза на диске осаждался слой меди толщиной в 3-4 мм, в точности повторявший все детали диска, но с обратным рельефом (то есть на месте канавок получались бугорки, но в точности повторяющие все их извивы). Затем полученную медную копию отделяли от цинкового диска. Она служила матрицей, с которой можно было отпрессовывать диски-пластинки из какого-нибудь пластического материала. В начале для этой цели применяли целлулоид, эбонит, всевозможные восковые массы и тому подобные вещества. Самая первая в истории граммофонная пластинка была изготовлена Берлинером в 1888 году из целлулоида. Граммофонные пластинки, поступившие в начале 90-х годов в продажу, были выполнены из эбонита. Оба эти материала не годились для назначенной цели, так как плохо подавались прессовке и потому недостаточно точно воспроизводили рельеф матрицы. Проделав множество опытов, Берлинер в 1896 году создал специальную шеллачную массу (в состав ее входили шеллак — смола органического происхождения, тяжелый шпат, зола и некоторые другие вещества), которая оставалась потом на протяжении многих десятилетий основным материалом для изготовления пластинок.

Проигрывание пластинок происходило на специальном устройстве — граммофоне. Главной частью звукоснимающего прибора здесь была слюдяная пластинка, сцепленная рычагом с зажимом, в который вставлялись сменные стальные иглы. Между зажимом и корпусом мембраны помещались резиновые прокладки. Первоначально граммофон приводился в движение от руки, а затем стал устанавливаться на ящик с часовым механизмом.

Как записывающее устройство, так и первые граммофоны Берлинера были весьма несовершенны. Шипение, треск и искажения были их постоянными спутниками. Тем не менее это изобретение имело огромный коммерческий успех — за какие-нибудь десять лет граммофоны распространились по всему миру и проникли во все слои общества. К 1901 году было выпущено уже около четырех миллионов пластинок. Фонографы не могли выдержать конкуренции с творением Берлинера, и Эдисону пришлось свернуть их производство.

База Знаний.




levnmr

Метки:  

Понравилось: 5 пользователям

Поразительные факты о ДНК

Воскресенье, 07 Августа 2016 г. 21:27 + в цитатник

levnmr


Поразительные факты о ДНК.



Дорогие друзья!
В этом посте я хочу познакомить вас с очень интересными фактами о ДНК





levnmr

Метки:  

Понравилось: 3 пользователям

Поиск сообщений в sundeliver
Страницы: 88 ... 20 19 [18] 17 16 ..
.. 1 Календарь