-Метки

Steam apple itunes appstore cs:go cyberpunk dota epic games gift card gta ios iphone itunes itunes карты java mastercard minecraft origin plati plati.ru premium premium xbox region free steam аккаунт steamgift uplay virtual card visa visa virtual windows world of tanks xbox xbox game pass ultimate xbox one xbox series аккаунт аккаунт cs:go аккаунт cyberpunk аккаунт dota аккаунт fortnite аккаунт gta аккаунт minecraft аккаунты антивирусы арутюнова банковская карта без санкций бонус бонусы виртуальные карты высшая математика гарантия готовые задачи готовые решения задачи по физике игровые аккаунты игры идз 1.1 идз 1.2 идз 10.1 идз 10.2 идз 11.1 идз 11.2 идз 11.4 идз 12.1 идз 12.2 идз 12.3 идз 13.1 идз 13.2 идз 13.3 идз 14.1 идз 14.2 идз 15.1 идз 15.2 идз 16.1 идз 16.2 идз 16.3 идз 18.1 идз 18.2 идз 19.1 идз 19.2 идз 2.1 идз 2.2 идз 3.1 идз 3.2 идз 4.1 идз 5.1 идз 5.2 идз 6.1 идз 6.2 идз 6.3 идз 6.4 идз 8.1 идз 8.2 идз 8.3 идз 8.4 идз 9.1 идз 9.2 карты коды контрольная работа купить аккаунты кэшбэк математика на заказ неопределенные интегралы подарочная карта подписка покупка полный доступ пределы предметы приложения производные и их приложения промокоды решаю дифференциальные уравнения решаю интегралы решаю пределы решаю ряды решебник решебник арутюнова решебник арутюнова решебник арутюнова решебник идз решебник по теории вероятностей решебник по физике решебник рябушко решебник тв решения по физике решенная физика рынок цифровых товаров рябушко рябушко решебник рябушко идз 11.3 решебник идз скачать приложения смена данных срс теория вероятностей физика цифровыетовары

 -Приложения

  • Перейти к приложению Всегда под рукой Всегда под рукойаналогов нет ^_^ Позволяет вставить в профиль панель с произвольным Html-кодом. Можно разместить там банеры, счетчики и прочее
  • Перейти к приложению Каталог блогов Каталог блоговКаталог блогов позволяет упорядочить блоги людей и сообществ по категориям, позволяя быстрее находить нужные и интересные блоги среди огромного количества блогов на сайте li.ru

 -Поиск по дневнику

Поиск сообщений в Massimo86

 -Подписка по e-mail

 

 -Статистика

Статистика LiveInternet.ru: показано количество хитов и посетителей
Создан: 16.04.2014
Записей:
Комментариев:
Написано: 417


100 готовых задач по физике Часть 20

Пятница, 18 Апреля 2014 г. 22:18 + в цитатник

1. В какое ядро превратилось ядро изотопа фосфора 15Р30, выбросив положительно заряженную β+- частицу? Готовое решение задачи

2. Ядро 4Be7 захватило электрон с К - оболочки атома. Какое ядро образовалось в результате К - захвата? Готовое решение задачи

3. Масса mα α - частицы (ядро гелия 24He ) равна 4,00150 а.е.м. Определить массу ma нейтрального атома гелия. Готовое решение задачи

4. Определить удельную энергию связи Еуд.св ядра 6С12. Готовое решение задачи

5. Определить массу нейтрального атома, если ядро этого атома состоит из 3-х протонов и 2-х нейтронов и энергия связи ядра равна 26,3 МэВ. Готовое решение задачи

6. Атомное ядро, поглотившее γ - квант (λ = 0,47 пм) пришло в возбужденное состояние и распалось на отдельные нуклоны, разлетевшиеся в разные стороны. Суммарная кинетическая энергия нуклонов равна 0,4 МэВ. Определить энергию связи Есв ядра. Готовое решение задачи

7. Сколько энергии выделится при образовании одного грамма гелия 2Не4 из протонов и нейтронов? Готовое решение задачи

8. Какую наименьшую энергию Е нужно затратить, чтобы оторвать один нейтрон от ядра азота 7N14? Готовое решение задачи

9. Определить наименьшую энергию Е, необходимую для разделения ядра углерода 6С12 на три одинаковые части. Готовое решение задачи

10. Какую наименьшую энергию нужно затратить, чтобы разделить на отдельные нуклоны изобарные ядра 3Li7 и 4Ве7? Почему для ядра бериллия эта энергия меньше, чем для ядра лития? Готовое решение задачи

11. Найти минимальную энергию связи Есв, необходимую для удаления одного протона из ядра азота 7N14? Готовое решение задачи

12. Определить постоянные распада λ изотопов радия: 88Ra219 и 88Ra226. Готовое решение задачи

13. Постоянная распада λ рубидия 89Rb равна 0,00077 с-1. Определить его период полураспада Т1/2. Готовое решение задачи

14. Сколько процентов начального количества радиоактивного актиния Ас225 останется: через 5 дней? через 15 дней? Готовое решение задачи

15. За один год начальное количество радиоактивного изотопа уменьшилось в три раза. Во сколько раз оно уменьшится за 2 года? Готовое решение задачи

16. За какое время t распадется 1/4 начального количества ядер радиоактивного нуклида, если период его полураспада Т1/2 = 24 ч? Готовое решение задачи

17. За 8 дней распалось 75% начального количества радиоактивного нуклида. Определить период полураспада. Готовое решение задачи

18. Найти число распадов за 1 с в 10 г стронция 38Sr90, период полураспада которого 28 лет. Готовое решение задачи

19. Найти отношение массовой активности а1 стронция Sr90 к массовой активности а2 радия Ra226. Готовое решение задачи

20. Определить число ΔN атомов, распадающихся в радиоактивном изотопе за время t = 10 с, если его активность А = 105 Бк. Считать активность постоянной в течение указанного времени. Готовое решение задачи

21. Определить активность А фосфора Р32 массой m = 1 мг. Готовое решение задачи

22. Определить порядковый номер Z и массовое число A частицы обозначенной буквой х, в символической записи ядерной реакции: 13Al27+x→1H1+12Mg26 Готовое решение задачи

23. Ядро изотопа магния с массовым числом 25 подвергается бомбардировке протонами. Ядро какого элемента получается в результате реакции, если она сопровождается получением α-частиц? Готовое решение задачи

24. Напишите недостающие обозначения в ядерных реакциях: 94Pu239 + 2He4 → X + 0n1, 1H2 + 0γ0 → 1H1 + X Готовое решение задачи

25. Определить энергию Q ядерных реакций:
1) 4Be9 + 1H2→5B10 + 0n1 2) 20Ca44 + 1H1→19K41 + 2He4
Освобождается или поглощается энергия в каждой из указанных реакций? Готовое решение задачи

26. Найти энергию Q ядерных реакций: 1) H3 (p, γ)He4, 2) H2 (d, γ)He4, Готовое решение задачи

27. При реакции Li6 (d,р)Li7 освобождается энергия Q = 5,025 МэВ. Определить массу mLi6. Готовое решение задачи

28. Найти энергию Q ядерной реакции N14 (n,р)С14, если энергия связи Есв ядра N14 равна 104,66 МэВ, а ядра С14 – 105,29 МэВ. Готовое решение задачи

29. При ядерной реакции Ве9 (α,n)С12 освобождается энергия Q = 5,70 МэВ. Пренебрегая кинетическими энергиями ядер бериллия и гелия и принимая их суммарный импульс равным нулю, определить кинетические энергии Т1 и Т2 продуктов реакции. Готовое решение задачи

30. Покоившееся ядро полония 84Ро210 выбросило α – частицу с кинетической энергией Т = 5,3 МэВ. Определить кинетическую энергию Т3 ядра отдачи и полную энергию Q, выделившуюся при α – распаде. Готовое решение задачи

31. Определить энергию Q распада ядра углерода 6С10 выбросившего позитрон и нейтрино. Готовое решение задачи

32. Определить порядковый номер Z и массовое число A частицы обозначенной буквой X, в символической записи ядерной реакции: 6C14 + 2He4 = 8O17 + ZXA Готовое решение задачи

33. Ядро урана 92U235, захватив один нейтрон, разделилось на два осколка, причем освободилось два нейтрона. Одним из осколков оказалось ядро ксенона 54Хе140. Определить порядковый номер Z и массовое число A второго осколка. Готовое решение задачи

34. Найти энергию Q ядерных реакций: 1) H2 (n, γ)H3 2) F19 (p, α)O16 Готовое решение задачи

35. Определить энергию Q ядерной реакции Ве9 (n,γ)Ве10, если известно, что энергия связи Есв ядра Ве9 равна 58,16 МэВ, а ядра Ве10 – 64,98 МэВ. Готовое решение задачи

36. Исследование спектра излучения Солнца показывает, что максимум спектральной плотности энергетической светимости соответствует длине волны λ = 500 нм. Принимая Солнце за черное тело, определить: 1) энергетическую светимость Rе Солнца; 2) поток энергии Фе, излучаемый Солнцем; 3) массу m электромагнитных волн (всех длин), излучаемых Солнцем за 1с. Готовое решение задачи

37. Определить количество теплоты Q, теряемое 50 см2 поверхностью расплавленной платины за 1 мин, если поглощательная способность платины aТ=0,8. Температура t плавления платины равна 17700 С. Готовое решение задачи

38. Длина волны λm, на которую приходится максимум энергии в спектре излучения черного тела, равна 0,58мкм. Определить максимальную спектральную плотность энергетической светимости (rλ,T)max, рассчитанную на интервал длин волн ∆λ=1нм, вблизи λm. Готовое решение задачи

39. Электрическая печь потребляет мощность P = 500Вт. Температура её внутренней поверхности при открытом небольшом отверстии d = 5 см равна 7000С. Какая часть потребляемой мощности рассеивается стенками? Готовое решение задачи

40. Вольфрамовая нить накаливается в вакууме силой тока I1=1,00 А до температуры T1=1000 К. При какой силе тока нить накалится до температуры T2=3000 К? Коэффициенты излучения вольфрама (коэффициенты черноты) и его удельные сопротивления, соответствующие температурам T1 и T2 равны: aT1=0,115, aT2=0,334, ρ1=25,7∙10-8 Ом∙м, ρ2=96,2∙10-8 Ом∙м. Готовое решение задачи

41. В спектре Солнца максимум спектральной плотности энергетической светимости приходится на длину волны λ0 = 0,47мкм. Приняв, что Солнце излучает как абсолютно чёрное тело, найти интенсивность солнечной радиации (т.е. поверхностную плотность I потока излучения) вблизи Земли за пределами её атмосферы. Готовое решение задачи

42. Железный шар диаметром 10 см, нагретый до температуры 12270 С, остывает на открытом воздухе. Через какое время его температура понизится до 1000 К? При расчете принять, что шар излучает как серое тело с коэффициентом поглощения (поглощательной способностью) 0,5. Теплопроводность воздуха не учитывать. Готовое решение задачи

43. На платиновую пластинку падает свет с длиной волны λ1 = 0,6мкм. Будет ли наблюдаться фотоэффект? Готовое решение задачи

44. Определить «красную границу» λ0 фотоэффекта для цезия, если при облучении его поверхности фиолетовым светом длиной волны λ = 400 нм максимальная скорость υmax фотоэлектронов равна 0,65 Мм/с. Готовое решение задачи

45. Натрий освещается монохроматическим светом с длиной волны λ = 400 нм. Определить наименьшее задерживающее напряжение, при котором фототок прекратится. «Красная граница» фотоэффекта для натрия λ0 = 584нм. Готовое решение задачи

46. Определить максимальную скорость υmax фотоэлектронов, вылетающих из металла при облучении γ-квантами с длиной волны λ=0,5нм. Учесть зависимость скорости электронов от энергии фотонов. Готовое решение задачи

47. Определить максимальную скорость υmax фотоэлектронов, вырываемых с поверхности серебра: 1) ультрафиолетовым излучением с длиной волны λ1 = 0,155мкм; 2) γ-излучением с длиной волны λ2 = 2,47 пм. Готовое решение задачи

48. На поверхность металлической пластинки падает свет с длиной волны 310 нм. Чтобы прекратить эмиссию электронов, нужно приложить задерживающее напряжение 1,5 В. Определить работу выхода Aвых и максимальную скорость υmax фотоэлектронов. Готовое решение задачи

49. Фотон с энергией ε = 10эВ падает на серебряную пластинку и вызывает фотоэффект. Определить импульс p, полученный пластинкой, если принять, что направления движения фотона и фотоэлектрона лежат на одной прямой перпендикулярной поверхности пластинки. Готовое решение задачи

50. Задерживающая разность потенциалов, при облучении фотокатода видимым светом оказалась равной 1,2 В. Было установлено, что минимальная длина волны света равняется 400 нм. Определить «красную границу» фотоэффекта. Готовое решение задачи

51. Пучок монохроматического света с длиной волны λ = 663нм падает нормально на плоскую зеркальную поверхность (рис.). Поток энергии Фe = 0,6 Вт. Определить силу F давления, Рис. испытываемую этой поверхностью, а также число N фотонов, падающих на неё за время t = 5с. Готовое решение задачи

52. Давление света, производимое на зеркальную поверхность p = 5мПа. Определить концентрацию n0 фотонов вблизи поверхности, если длина волны света, падающего на поверхность, λ = 0,5мкм. Готовое решение задачи

53. На расстоянии r = 5м от точечного монохроматического (λ = 0,5мкм) изотропного источника света расположена площадка (S1 =8 мм2), перпендикулярно падающим пучкам. Определить число N фотонов, ежесекундно падающих на площадку. Мощность излучения P = 100Вт. Готовое решение задачи

54. Параллельный пучок света длиной волны λ = 500нм падает нормально на зеркальную поверхность, производя давление p = 10мкПа. Определить:
1) концентрацию n фотонов в пучке;
2) число n1 фотонов, падающих на поверхность площадью S = 1м2 за время t = 1с. Готовое решение задачи

55. На зеркальную поверхность под углом α = 600 к нормали падает пучок монохроматического света (λ = 590нм). Поверхностная плотность потока энергии светового пучка φ =1кВт/м2. Определить давление p, производимое светом на зеркальную поверхность. Готовое решение задачи

56. Свет падает нормально на зеркальную поверхность, находящуюся на расстоянии r = 10 см от точечного изотропного излучателя. При какой мощности Pe излучателя давление p на зеркальную поверхность будет равным 1мПа? Готовое решение задачи

57. Свет с длиной волны λ = 600нм нормально падает на зеркальную поверхность и производит на неё давление p = 4мкПа. Определить число N фотонов, падающих за время t = 10 с на площадь S = 1мм2 этой поверхности. Готовое решение задачи

58. Точечный источник монохроматического (λ =1нм) излучения находится в центре сферической зачернённой колбы радиусом R=10 см. Определить световое давление p, производимое на внутреннюю поверхность колбы, если мощность источника P=1кВт. Готовое решение задачи

59. Фотон с энергией ε = 0,75 МэВ рассеялся на свободном электроне под углом
θ = 600. Принимая, что кинетическая энергия и импульс электрона до соударения с фотоном были пренебрежимо малы, определить:
1) энергию ε' рассеянного фотона;
2) кинетическую энергию T электрона отдачи;
3) направление его движения φ. Готовое решение задачи

60. Определить энергию T электрона отдачи при эффекте Комптона, если фотон (λ = 100 пм) был рассеян на угол θ = 1800. Готовое решение задачи

61. В результате эффекта Комптона фотон при соударении с электроном был рассеян на угол θ = 900. Энергия рассеянного фотона ε’ равна 0,4 МэВ. Определить энергию ε фотона до рассеяния. Готовое решение задачи

62. Определить угол θ, на который был рассеян квант с энергией 2,04МэВ при эффекте Комптона, если кинетическая энергия электрона отдачи Т равна 1,02 МэВ. Готовое решение задачи

63. Определить импульс электрона отдачи Pe, если фотон с энергией 1,02 МэВ в результате рассеяния потерял половину своей энергии. Готовое решение задачи

64. Вычислить радиус первой орбиты атома водорода (боровский радиус) и скорость электронов на этой орбите. Готовое решение задачи

65. Определить энергию ε фотона, соответствующего второй линии в первой инфракрасной серии (серии Пашена) атома водорода. Готовое решение задачи

66. Электрон в атоме водорода перешел с четвёртого энергетического уровня на второй. Определить энергию ε испущенного при этом фотона. Готовое решение задачи

67. Определить частоту света, излучаемого возбуждённым атомом водорода, при переходе электрона на второй энергетический уровень, если радиус орбиты электрона изменился в 9 раз. Готовое решение задачи

68. Определив энергию ионизации атома водорода, найти в электрон–вольтах энергию фотона, соответствующую самой длинноволновой линии серии Лаймана. Готовое решение задачи

69. Определить длину волны λKα и энергию фотона Kα – линий рентгеновского спектра, излучаемого вольфрамом при бомбардировке его быстрыми электронами. Готовое решение задачи

70. Определить напряжение на рентгеновской трубке с никелевым анодом (Z = 28), если разность длин волн ∆λ между Kα - линией и коротковолновой границей сплошного рентгеновского спектра равна 84 пм. Готовое решение задачи

71. Электрон, начальной скоростью которого можно пренебречь, прошел ускоряющую разность потенциалов U . Найти длину волны де Бройля λ для двух случаев: 1) U1 = 51 В; 2) U2 = 510 кВ. Готовое решение задачи

72. На узкую щель (рис.) шириной a = 1 мкм направлен параллельный пучок электронов, имеющих скорость υ = 3,65 Мм/с. Учитывая волновые свойства электронов, определить расстояние x между двумя максимумами интенсивности первого порядка в дифракционной картине, полученной на экране, отстоящем на L =10 см от щели. Готовое решение задачи

73. На грань кристалла никеля падает параллельный пучок электронов. Кристалл поворачивают так, что угол скольжения φ изменяется. Когда этот угол делается равным 640, наблюдается максимальное отражение электронов, соответствующее дифракционному максимуму первого порядка. Принимая расстояние d между атомными плоскостями кристалла равным 200 пм, определить длину волны де Бройля λ электронов и их скорость υ. Готовое решение задачи

74. Координата пули определена с точностью до 0,1 мм. С какой точностью ∆υx можно определить скорость пули? (m = 10 г). Готовое решение задачи

75. Электрон находится внутри атома, размер которого имеет порядок 10-10 м. Найдите неопределенность скорости ∆υx и сравните ее с величиной скорости на боровских орбитах. Готовое решение задачи

76. Кинетическая энергия T электрона в атоме водорода составляет величину порядка 10 эВ. Используя соотношение неопределенностей, оценить минимальные линейные размеры lmin атома. Готовое решение задачи

77. Используя соотношение неопределенностей энергии и времени, определить естественную ширину ∆λ спектральной линии излучения атома при переходе его из возбужденного состояния в основное. Среднее время τ жизни атома в возбужденном состоянии принять равной 10-8 с, а длину волны λ излучения – равной 600 нм. Готовое решение задачи

78. Электрон находится в бесконечно глубоком одномерном прямоугольном потенциальном ящике шириной l. Вычислить вероятность того, что электрон, находящийся в возбужденном состоянии n=2, будет обнаружен в средней трети ящика. Готовое решение задачи

79. Моноэнергетический поток электронов E = 100 эВ падает на низкую прямоугольную потенциальную ступень бесконечной ширины. Определить высоту потенциальной ступени U0, если известно, что 4% падающих на эту ступень электронов отражается. Готовое решение задачи

80. Электрон с энергией Е = 4,9 эВ движется в положительном направлении оси x. Высота U0 потенциальной ступени равна 5 эВ. При какой шине d ступени вероятность W прохождения электрона через нее будет равна 0,2? Готовое решение задачи

81. Электрон находиться в одномерном потенциальном ящике шириной l. Определить среднее значение координаты x электрона (0 < x < l). Готовое решение задачи

82. Атом водорода находиться в состоянии 1s. Определить вероятность W пребывания электрона в атоме внутри сферы радиусом r = 0,1a (где a-радиус первой боровской орбиты). Волновая функция, описывающая это состояние, считается известной. Готовое решение задачи

83. Электрон в возбужденном атоме водорода находиться в 3р - состоянии. Определить изменение магнитного момента, обусловленного орбитальным движением электрона, при переходе атома в основное состояние. Готовое решение задачи

84. Определите массу нейтрального атома 2452Сr. Готовое решение задачи

85. Водород обогащен дейтерием. Определить массовые доли ω1 протия и ω2 дейтерия, если относительная атомная масса Ar такого водорода оказалось равной 1,122. Готовое решение задачи

86. Определите, какую часть массы нейтрального атома 612C (m = 19,9272∙10-27кг) составляет масса его электронной оболочки. Готовое решение задачи

87. Объяснить строение атома и обозначения. Готовое решение задачи

88. Каково строение ядра изотопа лития 37Li? Готовое решение задачи

89. Чем отличаются ядра изотопов азота 714N и 715N? Готовое решение задачи

90. Определите, пользуясь таблицей Менделеева, число нейтронов и протонов в атомах платины 78195Pt и урана 92238U. Готовое решение задачи

91. Объясните отличие изотопов от изобаров. Готовое решение задачи

92. Определите плотность N ядерного вещества, выражаемую числом нуклоном в 1 см3, если в ядре с массовым числом A все нуклоны плотно упакованы в пределах его радиуса. Готовое решение задачи

93. Объясните что такое: 1. α – распад и приведите примеры. 2. β – распад и приведите примеры. Готовое решение задачи

94. Вычислить дефект массы ∆m и энергию связи Eсв ядра 3Li7. Готовое решение задачи

95. При бомбардировке изотопа лития 3Li6 дейтронами 1H2 (mH= 3,3446∙10-27кг) образуются две α -частицы 2He4 (mHe= 6,6467∙10-27кг) и выделяется энергия ∆E = 22,3МэВ. Определить массу изотопа лития. Готовое решение задачи

96. Определить удельную энергию связи ядра 73Li Готовое решение задачи

97. Определить энергию Е, которую нужно затратить для отрыва нейтрона от ядра 2311Na . Готовое решение задачи

98. Энергия связи ЕСВ электрона с ядром невозбужденного атома водорода 1H1 (энергия ионизации) равна 13,6 эВ. Определить, на сколько масса атома водорода меньше суммы масс свободных протона и электрона. Готовое решение задачи

99. Радиоактивный натрий 2411Na распадается, выбрасывая β-частицы. Период полураспада натрия 14,8 ч. Вычислить количество атомов, распавшихся в 1 мг данного радиоактивного препарата за 10 ч. Готовое решение задачи

100. Определить период полураспада радона, если за 1 сут из 1 млн. атомов распадается 175 000 атомов. Готовое решение задачи

Рубрики:  Готовые решения по физике
Группа ВКонтакте
Решенные задачи по физике
Каталог Решебник задач по физике (pdf)
Метки:  
Понравилось: 1 пользователю

 

Добавить комментарий:
Текст комментария: смайлики

Проверка орфографии: (найти ошибки)

Прикрепить картинку:

 Переводить URL в ссылку
 Подписаться на комментарии
 Подписать картинку