Случайны выбор дневника Раскрыть/свернуть полный список возможностей


Найдено 10 сообщений
Cообщения с меткой

е.велихов - Самое интересное в блогах

Следующие 30  »
Rewiever

Почему токамак - российский бренд. Как водка...

Среда, 16 Апреля 2025 г. 23:28 (ссылка)


Токамак раскроет тайны горячей плазмы


 


В эти дни на базе НИЦ «Курчатовский институт» создается токамак принципиально нового типа, в недрах которого можно будет получить плазму более высоких энергетических значений, чем обычно. Установка, находящаяся на этапе сборки, напоминает инопланетный космический корабль с распахнутыми настежь черными глазницами иллюминаторов. Однако пройдет несколько месяцев, и в его металлическом «сердце» поселится раскаленная плазма. Тогда здесь начнутся эксперименты, которые позволят ученым пролить свет на многие фундаментальные вопросы и решить ряд важных прикладных задач. 


p_xvosenko1 (77x117, 11Kb)



     Что это за вопросы и каких результатов стоит ожидать от работы этой   уникальной мегаустановки - наш   разговор с   Петром Павловичем Хвостенко,   доктором технических наук, научным руководителем Курчатовского   комплекса   термоядерной энергетики и плазменных технологий НИЦ «Курчатовский   институт».


 


  — Петр Павлович, мы с вами находимся в зале, где создается новый токамак. Расскажите, пожалуйста, каковы цели и   задачи этого проекта.


 — Он называется токамак Т-15МД, то есть Т-15 модернизированный. Известно, что последние годы строится большой   международный токамак - реактор ITER. И одна из наших задач - поддержка программы ITER. Вторая задача, не менее важная   - построить гибридный реактор, который станет источником термоядерных нейтронов. Наш токамак Т-15МД - прототип будущей большой установки, с помощью которой можно будет решить проблему замыкания топливного цикла в атомной энергетике. Ведь сегодня считается, что основного топлива для тепловых атомных станций хватит лет на 50–60.


 


 — Поэтому встала задача: как возобновить топливо для атомных тепловых реакторов?


 —  Токамаки как источники термоядерных нейтронов как нельзя лучше подходят для решения этой задачи. Токамак должен генерировать термоядерные нейтроны, которые облучают топливо, окружающее плазму. В этом случае исходом топлива становится торий-232, которого очень много в земной коре. После облучения нейтронами мы получаем уран-233, который и будет топливом для атомных станций.


 


— Чем же термоядерный источник нейтронов лучше классической термоядерной электростанции?


— Разница вот в чем. В термоядерном источнике нейтроны получаются от взаимодействия пучка быстрых атомов с основной плазмой, при этом температура плазмы не должна доходить до 120–150 млн градусов, как в чистом энергетическом реакторе. Она должна иметь температуру не более 30–50 млн градусов.


 


— Неужели это мало?


— Немного. На сегодняшних токамаках с помощью гиротронов легко получить и более высокие температуры. Но если вы имеете источник быстрых атомов, которые взаимодействуют с основной плазмой, то в этом случае появляются нейтроны, с помощью которых мы можем изучать физику взаимодействия процесса. 


 


— На каком веществе будет работать токамак?


— На водороде. Поэтому нейтронов здесь не будет, но все вопросы технологии процесса мы отработаем. Причем он может работать как для нужд ITER, так и для задач гибридного реактора.


 


— Внешне ваш токамак как будто из фантастического фильма. Кажется - сейчас полетит.


— Да, это действительно нечто космическое. А когда входишь внутрь, создается полное ощущение полета. На сегодня мы окончательно смонтировали тороидальную магнитную систему, камеру высотой 3,5 м, и монтажники входят туда, ставят диагностику, меняют элементы, которые будут взаимодействовать с плазмой. Когда плазма поселится в «сердце» токамака, ощущение фантастики усилится.


 


— Токамаков в мире существует немало. Чем ваш отличается от других?


— Наш токамак уникален. Он имеет достаточно низкое аспектное отношение, то есть отношение величины большого радиуса плазменного шнура к малому радиусу. Мы сможем получать более высокое давление плазмы. Такой комбинации низкого аспектного отношения и магнитного поля в 2 Тл нет нигде в мире.


 


— Кто придумал такую модель установки?


Конечно, у истоков этих работ на современном этапе стоял Е.П. Велихов, инициировавший международный проект ITER. Э.А. Азизов, который долгое время был директором Курчатовского института физики токамаков, выдвинул идею установки, а я рассчитывал всю магнитную конфигурацию. И когда она стала более или менее понятна, мы обратились к главному конструктору Научно-исследовательского института электротехнической аппаратуры им. Д.В. Ефремова (НИИЭФА) в Санкт-Петербурге. Они делали всю проработку конструкции токамака. А изготовление всех элементов и узлов взяла на себя брянская группа компаний машиностроения и приборостроения, где в рекордно короткие сроки была создана практически вся магнитная система. Это тоже уникальный результат междисциплинарного сотрудничества. Наши коллеги, в том числе зарубежные, не верят, что можно было все это сделать менее чем за два года.


 


— Что дает такое сочетание физических характеристик в работе вашей установки?


— Мы можем получать более высокие значения бета. Это отношение газокинетического давления плазмы к давлению магнитного поля. Это значительно повышает эффективность использования магнитного поля. Кроме того, обычно при повышении давления развивается неустойчивость, которая разрушает плазменный шнур, и поэтому давления выше достичь нельзя. А вот в компактном токамаке, где все сжато, величина бета может достигать более заметных ­величин, а это очень важно. Мы сохранили магнитное поле, достаточно высокое для токамака. Это удалось потому, что мы использовали медный проводник с небольшой добавкой серебра. Что это дало? Во-первых, мы имели проводник с проводимостью чистой меди, а по прочности он как нержавеющая сталь. Это важно, потому что при работе токамака


действуют очень большие растягивающие силы, и если бы это была чистая медь, то предел прочности был бы превышен. А когда мы перешли на другой тип проводника, все получилось.


 


— Как вы думаете, когда установка заработает в полную силу?


— Физический пуск установки запланирован на декабрь 2020 г. Мы работаем в тесном контакте с ГК «Росатом» в рамках федеральной целевой программы «Ядерные энерготехнологии нового поколения». По всем расчетам, к концу апреля мы окончательно соберем нашу установку, потом подключим вакуумную откачку, заварим камеру, всё проверим. Вероятно, к лету она будет готова с точки зрения подключения коммуникаций. А потом мы всё это разовьем, сделаем антресоли, чтобы физики могли ставить диагностику.


 


— Физики будут работать на антресолях?


— Да, по всему периметру вокруг токамака у нас будут установлены красивые двухуровневые антресоли. Это будет деревянная конструкция, близко подходящая к токамаку. На первом этапе диагностики пройдут вакуумные испытания на стендах. Затем они будут пристыковаться к патрубкам (их здесь 152) и работать непосредственно с токамаком.


 


— Пристыковываться? Выходит, не зря я увидела здесь космическую аналогию?


— Да, именно пристыковываться. Хотя, конечно, люди будут находиться в атмосфере Земли, не будут летать, но сравнение с космическим экспериментом тут вполне уместно. Наблюдение за плазменным процессом, который будет происходить внутри камеры, — это, в принципе, то же самое, что изучение процессов, происходящих на Солнце или в звездах. И вопросов здесь пока больше, чем ответов.


 


— Насколько опасна такая работа?


— Больших нейтронных потоков здесь не будет. Во время разряда образуется пучок ускоренных электронов, которые попадают на стенку, образуется жесткое гамма-излучение, но интенсивность его очень невелика. К тому же, когда работает установка, в зале никого нет. У нас существует мощная биозащита - стены из свинца и бетона. В процессе работы токамака в отличие от тепловых атомных станций большой наведенной радиационной активности нет, поскольку нет и нейтронов. И вообще токамак по сравнению с АЭС более естественный с точки зрения природоподобия. Президент НИЦ «Курчатовский ­институт» М.В.Ковальчук, как идеолог развития природоподобных технологий, всегда отмечает, что токамак - это природоподобная энергетическая установка по своей сути.


 


— Почему?


— Именно потому, что мы воссоздаем такие же реакции, какие происходят на Солнце и в звездах. Природа распорядилась получать энергию путем синтеза легких ядер - и ровно то же самое мы делаем в токамаке. В отличие от реакторов, делящих тот же уран. Ведь такого процесса не увидишь в природе.


 


— Каких ожидаете результатов?


— В первую очередь, мы должны собрать большую базу данных как по инженерии, так и по физике для проектирования будущих термоядерных станций и гибридных реакторов. За это время нам нужно обобщить всю информацию, чтобы потом меньше оставалось вопросов с точки зрения проекта будущих больших реакторов.


 


— А с фундаментальной научной точки зрения каких ожидаете открытий?


— Физика плазмы — наука, до конца не изведанная. Надо найти пути к уменьшению различных влияний и повышению устойчивости плазмы. Эти задачи идут в поддержку ITER, потому что следующий шаг - это демонстрационный реактор, большая экспериментальная установка, где мы ждем по-настоящему прорывных результатов.


vmh_ludi (273x217, 78Kb)



 —  Помните, как у Высоцкого: «А с этой плазмой дойдешь до маразма». Правда ли, что плазма  самое сложное состояние вещества?


— Абсолютная правда. Состояние это сложное и во многом непонятное. Идея токамака была изначально завязана на плазме, и родилась она в этих стенах, в Курчатовском институте, еще в 50-е гг. прошлого века. И.Е. Тамм и А.Д. Сахаров выдвинули идею, как с помощью магнитного поля можно удерживать высокотемпературную плазму, а потом у нас в институте начались эти исследования. После испытания водородной бомбы в 1953 г. И.В. Курчатов говорил о том, что термоядерная энергия должна не разрушать, а созидать. И когда появилась эта идея, он горячо её поддержал, лично интересовался исследованиями и даже предложил установку, которая очень похожа на сегодняшний гибридный реактор. В этом был пророческий дар И.В. Курчатова. Исследования были поручены Л.А. Арцимовичу, под руководством которого проводились исследования именно в этом здании. А само слово «токамак» (сокращение от «тороидальная камера с магнитными катушками») придумал И.Н. Головин, первый заместитель И.В. Курчатова. Это слово используется во всем мире, это наш бренд - как спутник, матрешка, валенки или водка.


 


— Первый токамак тоже появился в этих стенах?


— Да, в 1959 г. Это была маленькая установка. А до 1965 г. в этом здании мы собрали еще девять установок различной конфигурации, на которых решались самые разные задачи. В 1968 г. здесь впервые в мире была получена плазма с температурой более 10 млн градусов. Никто не верил, что нам удалось достичь такой температуры. Предложили Л.А. Арцимовичу пригласить иностранную делегацию, чтобы это проверить. А Лев Андреевич был не только выдающимся ученым и организатором науки, но еще и очень смелым человеком. Холодная война, железный занавес - а он сумел добиться разрешения на приезд в эти сверхсекретные стены английских ученых. Настолько велик был его авторитет.


 


— И что же? Они померили температуру плазмы?


— Померили. Причем приехали на пяти огромных фурах, привезли свое измерительное оборудование. Тогда ведь вся диагностика была громоздкой. В результате измерений температура оказалась даже чуть выше, чем мы заявляли. После этого все сомнения были сняты - и токамак получил «зеленую улицу». Сегодня более 300 токамаков создано по всему миру. Но наш, повторю, уникален.


 


— Наверное, к вам на работу приходят очень квалифицированные физики?


— Сейчас вектор исследований перемещается в технологию, инженерию. Например, в ITER первая стенка должна будет меняться раз в пять лет. Там идут большие тепловые потоки до 20 МВт/м2, начинается эрозия материала, он попадает в плазму, поэтому без супер-профессиональных физиков и инженерных кадров не обойтись. За годы работы мы провели исследования по широкому спектру материалов, включая вольфрам, который сейчас предлагают наши европейские партнеры. Выясняется, что он не очень хорошо себя ведет при больших нагрузках.


 


— То есть идет поиск идеального материала?


— Да. Сейчас наши ученые предлагают литиевые технологии, которые позволяют перераспределять мощность на более широкие площади, не давая такую интенсивную нагрузку. Эти идеи также будут проверены на нашем токамаке.


 


— Значит, опять настал момент, когда инженеры в стране нужны?


— Да, это так. Токамак будет полностью управляться системой компьютеров, вся техника — самая современная и очень сложная. Физики — это наши главные генераторы идей, а инженеры - наша главная движущая сила. С ростом масштабов установок и их сложности эти специалисты должны быть самого высокого уровня.


 


— Где вы их берёте?


— Физики - базовая кафедра МИФИ, МФТИ, физфак МГУ. Инженерия - Бауманский институт, МЭИ, МАИ. Очень толковые ребята, других здесь не держат.


 


— Вы ведь тоже в свое время пришли сюда из МГТУ им. Н.Э. Баумана?


— Да, это моя альма-матер. Когда я пришел сюда больше 40 лет назад, мне казалось, что я попал в какую-то научную Мекку. Здесь широчайшее поле знаний, на котором, куда ни обратишься, тебе подскажут все, что ты хочешь узнать. Ты всё это впитываешь и с какого-то момента тоже становишься разносчиком знаний. Это поле знаний - Курчатовский институт.


n_leskova1 (93x100, 9Kb)



— Такая атмосфера осталась?


— Осталась. Мало того, в последние годы, я бы сказал, мы двинулись более широко, в разнообразных направлениях. М.В. Ковальчук такие традиции активно развивает. У нас по его инициативе сейчас представлены буквально все науки, даже гуманитарные. При этом активно развиваются и базовые атомные исследования, с которых когда-то начинался наш институт. Сегодня внимание к атомным и ядерным установкам и проводимым на них исследованиям огромное. Есть понимание на государственном уровне, что эти знания могут двигать общество вперед, и радостно, что именно Курчатовский институт этим занимается. Мне особенно приятно об этом говорить, потому что я проработал здесь, можно сказать, всю жизнь.


 


Вопросы задавала:  Наталия Лесковаисточник:  "Пресс-центр НИЦ "КИ" - со ссылкой на журнал "В мире науки" - 16.04.2019

Комментарии (0)КомментироватьВ цитатник или сообщество
Rewiever

Вопросы о "русском коллайдере"

Среда, 27 Июля 2022 г. 23:12 (ссылка)


«Русский коллайдер»: зачем в Подмосковье в 80-е


прорыли 21-километровый подземный кольцевой тоннель


 


 Анатолий Караваев26 июля 2022, https://ru.rt.com/lv4x 


 


 Вначале нужно объяснить, как появился этот текст. Некоторое время назад вышеупомянутый автор связался со мной, представившись журналистом, и попросил ответить на ряд вопросов, связанных с историей работ по проекту УНК (ускорительно-накопительного комплекса протонов) в подмосковном Протвино. Он обратился именно ко мне, поскольку ознакомился с рядом моих прежних публикаций в СМИ по этой теме (так и сказал) - они собраны в моём блоге на Ли.ру. Почему бы и нет?  - и наш телефонный разговор продолжился более часа. Хорошо - не за мой счёт... Гораздо больше времени заняли оцифровка записи с телефона и подготовка к печати. Тогда я и узнал, что публикация готовится для портала, который мне не совсем "по нутру" из-за его явной пропагандистской направленности - но в данном случае я дал согласие. Ведь правду о прошлом надо не только знать, но и отстаивать... Итак: 


 


В начале июля 2022 года в Швейцарии был перезапущен модернизированный Большой адронный коллайдер (БАК). Уже много лет в научном мире он прочно удерживает пальму первенства, во много раз превосходя по своим возможностям другие ускорители частиц. Между тем в 80-х годах прошлого века, ещё до создания БАК, в подмосковном Протвине начали реализовывать сопоставимый по масштабам проект самого мощного протонного ускорителя в мире — Ускорительно-накопительного комплекса (УНК). Однако судьба «русского коллайдера» оказалась печальной. После распада СССР строительство ещё несколько лет продолжалось, но в конце 1990-х из-за хронического безденежья от проекта окончательно отказались. На память о нём остался лишь прорытый под землёй кольцевой тоннель длиной 21 км. В рамках проекта «Незабытые истории» о судьбе УНК RT поговорил с физиком из Протвина Геннадием Дерновым.


 


— Геннадий Николаевич, прежде чем поговорить о печальной судьбе ускорительно-накопительного комплекса, расскажите, когда и как появилась идея его создания?


— Она вытекала из логики своеобразного соревнования физиков наиболее развитых стран в создании всё более мощных ускорителей заряженных частиц, позволявших проникать всё глубже в строение и свойства внутриатомного мира — микрокосмоса с его загадками и открытиями. Вообще, это интересный парадокс физической науки — чем на меньшие расстояния вглубь атома проникнуть, тем большие по размеру приборы приходится создавать, вплоть до самых грандиозных. Но цель — овладение энергией атома, — того стоит.


1bv_befotre2 (314x210, 58Kb)Так вот, во второй половине XX века вперёд вырвались советские физики благодаря созданию ускорителя У-70 — протонного синхротрона на обычных магнитах с максимальной энергией 70 гигаэлектронвольт (ГэВ), с длиной орбиты частиц 1,5 км. Он был построен в Протвине за семь лет приповерхностно, то есть без тоннеля, и запущен в октябре 1967 года.


 


— Видимо, к 50-летию советской власти?


— Да. На протяжении последующих пяти лет он оставался крупнейшим по энергии ускорителем в мире, пока в 1972 году в США в тоннеле длиной более 6 км не был запущен в шесть раз более мощный протонный синхротрон. Аналогичная машина чуть позже была построена и Европейской организацией ядерных исследований (ЦЕРН) в Женеве.


Наиболее сложные задачи фундаментальной физики в проведённых экспериментах решить не удавалось, и в Европе задумались над ещё более масштабным проектом, который в итоге вылился в строительство в 1983—1988 годах Большого электрон-позитронного коллайдера (LEP), для которого был вырыт 27-километровый тоннель, в котором было смонтировано два ускорительных тракта во встречных направлениях. Это позволяло осуществлять столкновения частиц, что удваивало эффект наблюдений, — отсюда и сам термин «коллайдер», от английского collide («сталкивать»).


Вот к этому времени и в СССР начал реализовываться проект УНК, позже обозначаемый в прессе «русским коллайдером», хотя до создания собственно ускорителя в прорытом за десять лет 21-километровом кольцевом тоннеле дело, к сожалению, так и не дошло.


 


— В чём было его отличие от LEP?


— Отличие от женевского LEP состояло в том, что в УНК подразумевалось ускорять не электроны, а в 2 тыс. раз более тяжёлые протоны от действующего ускорителя У-70, что даёт гораздо более сильные физические эффекты при соударениях.Именно поэтому в тоннеле LEP физиками ЦЕРН в начале 1990-х было решено заменить всю ускорительную часть на использование адронов (так по-другому называют протоны), и эта работа привела к запуску в 2008 году LHC — Большого адронного коллайдера, до сих пор крупнейшего в мире. И только здесь была достигнута одна из научных целей — открыт так называемый бозон Хиггса, подтвердивший справедливость общепринятой теории строения материи.


Но научный поиск требует движения дальше, и теперь в ЦЕРН приступают к проекту нового коллайдера FCC в новом, уже 100-километровом тоннеле. Вот такова картина хода событий в познании физических основ нашего мира, в которой проект УНК, пусть даже неосуществлённый, был одной из ступенек…  


 


— Как я понимаю, основная заслуга в продвижении идеи строительства УНК принадлежала известному учёному, академику Анатолию Логунову?


aalog_rt2 (130x175, 21Kb)— Во многом да, но он был не один. Его роль в проталкивании проекта УНК бесспорна, тем более что Анатолий Алексеевич  (см.) был вице-президентом Академии наук, членом ЦК КПСС. Да и почти всё физическое сообщество страны было заинтересовано в том, чтобы вернуть пальму первенства, как было в первые годы после запуска У-70. На нём ведь было сделано несколько крупных открытий — к примеру, впервые удалось зарегистрировать созданные в столкновении на мишени античастицы. 


Но решение ряда физических фундаментальных проблем в картине микромира требовало более высоких энергий, и точно так же в создании проекта УНК и работе по его строительству участвовали многие научные институты страны и — без преувеличения ,— сотни предприятий.


Поэтому работа над УНК с проектной энергией пучка в 3000 ГэВ постепенно шла, и уже в начале 1980-х годов всё начало реализовываться. По решению правительства строительные работы начались в 1983 году.


Уже тогда было ясно, что задача будет решаться с использованием западных технологий. В тоннеле нужны были не только обычные «тёплые» магниты, которые работают при комнатной температуре. При таком размере кольца с их помощью ускорить протоны можно только до 600 ГэВ, что в пять раз меньше проектной мощности.


Поэтому в проект УНК было заложено ещё два кольца с электромагнитами со сверхпроводящей обмоткой. У нас их тогда не делали, но со временем смогли решить эту проблему. В городе Усть-Каменогорске (сейчас он уже в Казахстане) на металлургическом заводе построили специальные линии, которые делали сам проводник -  проволочки, которые скручивались в жгуты сверхпроводящего кабеля. Сборку этих магнитов наладили у нас в опытно-производственном институте. Общее число магнитных дипольных блоков в каждом кольце должно было составить порядка 2,5 тыс. штук, каждый весом около 10 т.


 


— Как должен был работать УНК?


— По проекту должны были построить два одинаковых по размеру сверхпроводящих кольцевых ускорителя, в которых протоны разгоняются во встречных направлениях. Первое кольцо с обычными «тёплыми» магнитами должно было принять пучок протонов через инжекционный канал из действующего ускорителя У-70 и поднять его энергию до промежуточного значения в 400—600 ГэВ. А далее второе кольцо с помощью сверхпроводящих магнитов должно было доводить её до конечной величины в 3000 ГэВ.


С такой энергией значительно увеличился бы эффект взаимодействия частиц, ещё более интересная физика открылась бы. Ещё одно такое же сверхпроводящее кольцо ускоряло бы протоны во встречном направлении, что обеспечивало бы энергию соударений 6000 ГэВ и оправдывало бы термин «русский коллайдер».


 


— А для чего вообще нужны магниты в коллайдере, почему они так важны?


— Тоннель для коллайдера выполнен в форме кольца, чтобы пучки протонов в процессе ускорения могли поворачивать по кольцевой траектории, а не вылетали на стенки вакуумной камеры, и нужны поворачивающие дипольные магниты. Законы физики, открытые много лет назад Фарадеем и Максвеллом, работают при любых энергиях.


В общем, открывавшиеся перспективы тогда очаровывали наших физиков, и работы в конце 1980-х у нас развернулись полным ходом. Для ускорения проходки тоннеля  закупили два канадских проходческих комбайна фирмы LOVAT, которые одновременно не только бурили тоннели диаметром 5,5 м (это как одноколейная линия метро), но и сразу оставляли за собой бетонную облицовку с металлической обшивкой изнутри. Строительство кольца проходило на глубине от 20 до 60 м и почти не затрагивало территорию, находившуюся на поверхности земли, поскольку было сделано два десятка вертикальных шахт для обеспечения проходки.


 


— А какая изначально сумма закладывалась на строительство УНК?


— Весь проект оценивался примерно в миллиард ещё советских рублей, доллар во времена СССР стоил 60 копеек.


 


— Когда по плану комплекс должны были запустить в эксплуатацию?


— По проекту должны были запустить в середине 1990-х годов — имея в виду два ускорительных канала, третий добавить немногим позже, — тогда это получился бы самый мощный коллайдер в мире на несколько лет, до ввода LHC в Женеве.


Но в то время обстановка в стране после событий 1991 года была непростая. Не только экономическая, но и политическая. Бюджет страны попал в руки парламентариев, они задавали тон при определении расходных статей. Там и у нас были лоббисты, которые поддерживали фундаментальную науку, считавшие, что с проектом УНК нужно продвигаться, бороться за пальму первенства. Были и противники затрат на фундаментальную науку, хотя в процентном отношении ко всему бюджету они и так хронически отставали от аналогичных затрат в развитых странах.  


Американцы тем временем приступили к осуществлению своего самого амбициозного суперпроекта SSC — протонного коллайдера в тоннеле длиной 87 км, то есть более чем втрое переплюнуть тот же европейский проект LHC. Прошли около 5 км в штате Техас, затраты стали уже стали исчисляться в миллиардах долларов, но в 1994 году проект был закрыт.


Конгрессмены США посчитали, что даже для них он получается слишком дорогой, и лучше подключиться к проекту LHC. Мы остались один на один со своим УНК, на который в 1990-х годах средств едва хватало, чтобы закончить проходку тоннеля и выплачивать зарплату строителям.


 


— Когда тоннель УНК был достроен?


— Кольцо замкнулось в декабре 1994 года. Я как раз присутствовал на торжественной сбойке тоннеля, когда перемычка встречных проходок была пробита. Геодезисты и прочие специалисты не ошиблись, кольцо идеально замкнулось, можно было приступать к работам уже в самом тоннеле. Но средств на это хронически не хватало, даже утверждённые бюджетом цифры не выполнялись, так что перспективы становились всё более туманными. Тем более у проекта УНК были и серьёзные противники — например, антагонистом был известный академик Евгений Велихов, руководитель Курчатовского института.


 


— А почему он был против?


epvelix_rt2 (186x221, 39Kb)— Мне представляется, что особенность курчатовцев состоит в том, что они всегда считали себя лидерами отечественной физики. Может быть, во времена самого Игоря Васильевича Курчатова и «атомного проекта» это так и было. Кстати, именно он в 50-х годах настоял на необходимости строительства самого мощного в мире протонного ускорителя, а сам проект У-70 был подготовлен в Институте теоретической и экспериментальной физики (ИТЭФ).


Возвращаясь к УНК... представлялось также какое-то противоборство личностей двух академиков, Логунова и Велихова, у каждого были свои научные интересы и задачи. А бюджет-то один...


Дошло даже до того, что Велихов  (см.)в  интервью «Российской газете» в начале 1999 года заявил, имея в виду УНК, следующее: «Ещё 15 лет назад стало ясно, что Серпуховский ускоритель мы никогда не построим, тем не менее постоянно вбухивали туда огромные средства, отрывая их от действительно необходимых перспективных работ» (см. подробно здесь).


И вот, к сожалению, он оказался прав в части прекращения работ по проекту УНК, поскольку именно в постдефолтном 1999 году в конце концов пришло общее понимание о необходимости закрытия проекта и консервации тоннеля.


Хотя многие сожалеют — даже при тощем финансировании за несколько лет мы вполне могли хотя бы «тёплые» магниты поставить в этом тоннеле и поднять энергию У-70 почти в десять раз — с 70 до 600 ГэВ. Почти все необходимые магниты были уже изготовлены и к концу 1990-х годов завезены в институт.


 


— Где они сейчас?


— Они до сих пор лежат там невостребованные. Только парочку диполей пробным образом установили в тоннеле на штатном месте.


 


— А сколько сейчас средств может понадобиться, чтоб доделать это кольцо и всё-таки запустить первую очередь?


— Если считать от стоимости всего УНК, это относительно небольшие деньги, в нынешних ценах на монтаж «тёплых» магнитов нужно что-то около 200—300 млн нынешних рублей. Но дело в том, что за прошедшие годы оказалась серьёзно разрушена и другая инфраструктура объекта — дороги, шахтные стволы, которые служат для связи с поверхностью, и всё прочее. Так что суммарные затраты уже будут совсем другими, это миллиарды рублей. А главное — серьёзные научные задачи на энергиях первой очереди УНК уже практически решены в ускорительных центрах Европы и США.


 


— Вы упомянули, что у советских учёных, помимо чисто научных задач, при задумке УНК было и стремление обогнать конкурентов, удерживать пальму первенства в мировой науке. Но что всё-таки было первостепенным?


— Линия руководства заключалась в том, чтобы поддержать выход на передовые позиции: советское должно быть лучшим в мире. Эта линия чётко отслеживалась до тех пор, пока существовал Советский Союз. После этого пришло понимание, что лучшими мы уже не можем быть, поэтому хорошо бы иметь достойные машины.


cern_lhcrt2 (314x235, 90Kb)К сожалению, сейчас энергия ускорителя У-70 мало кого интересует, ну диссертации на нём ещё можно клепать, как говорится.


Хотя он и спустя 55 лет после запуска остаётся самым мощным ускорителем в бывшем СССР. Глобально осваивается уже пройденный маршрут, производятся дополнительные исследования характеристик, в таблицу заносятся какие-то новые коэффициенты взаимодействия, но это не сулит серьёзных открытий.


 


— Можно ли сказать, что если бы всё было нормально с нашей страной, достроили бы УНК, то он имел бы все шансы «отменить» Большой адронный коллайдер  (см.) и стать центром притяжения мировой физической науки, каким сейчас является ЦЕРН?


— Боюсь, что нет, потому что в ЦЕРН (традиционно) ведут самые современные научные исследования — интернет же в ЦЕРН придумали для обмена данными.


 


— Судя по публикациям в СМИ середины 1990-х годов, тогда ещё у многих теплилась надежда, что всерьёз забуксовавший проект УНК удастся довести до конца. Была реальная возможность это сделать?


— По личному указанию академика Логунова я тогда занимался, так сказать, пиар-кампанией этого проекта. Ездил в Госдуму, встречался с (некоторыми) депутатами, у меня, как и в целом по Институту,  к тому времени уже укоренились убеждения о том, что надо достроить хотя бы то, что уже, в общем-то, у нас было в руках. То есть поставить «тёплые» магниты, сделать протонный ускоритель на 600 ГэВ, который свою делянку в мировом экспериментальном поле получил бы. Но даже эту маленькую часть общей задачи, до которой было совсем немного, противники проекта реализовать не дали. Оппоненты наши, как я уже говорил, в основном представляли Курчатовский институт, и в конце концов в этой схватке им удалось победить.


 


— В 1994 году в федеральном бюджете отдельной строкой было предусмотрено 96 млрд рублей на строительство УНК. Читал, что реальные поступления составили менее половины от этой суммы. Почему не все деньги доходили?


— То же, что и сегодня периодически происходит: украли. Конечно, не мы в ИФВЭ. Просто правительство постоянно, исходя из каких-то своих установок, корректировало те или иные расходы. То, что было намечено, отменялось, заменялось обещаниями возместить как-то, либо не обещали даже ничего.


У нас даже были марши протестов, летом 2002 года шли от Пущино до Москвы пешком 3 дня. На площади у здания правительства РФ учёные митинг проводили. Туда пришли и  биофизики, и от нас тоже были физики, потому что наука повсеместно тогда совсем на обочине государственного интереса находилась.


 


— Сейчас, во всяком случае со стороны, кажется, что ситуация с государственным финансированием науки изменилась к лучшему.


— Хотя  промежуток с 2022 по 2031 год и объявлен в стране десятилетием науки и технологий, но для многих людей из научной среды в части зарплат это звучит как-то даже издевательски. У нас повсеместно создана мощная административная прослойка, на которую уходит очень много денег. Для примера — в протвинском ИФВЭ научные сотрудники, защитившие диссертации физики получают на порядок меньше, чем ряд работников высшего административного плана и других людей, которые непосредственно к научной деятельности отношения не имеют.


 


— Встречалось мнение — в тех же СМИ, — что достраивать тоннель УНК было во многом вынужденной необходимостью — в случае если бы проект забросили сразу после развала СССР, ещё до окончания полного завершения кольца, то могли быть какие-то серьёзные экологические последствия.


— Действительно, огромная полость в земле в водоносных горизонтах — это небезопасно. Неизвестно, как поведут себя целые слои грунтов, не провалится ли земля туда. Хотя она небольшая, но всё же. Но это скорее попытка получить поддержку в финансовом смысле. После того как кольцо достроено, полностью забетонировано с отдельными прорехами в северной его части и почти полностью металлом изнутри покрыто, опять же в северной части не всё выполнено, надо доработать. Там постоянно текут грунтовые воды.


И поэтому та сумма, которая выделяется на обслуживание УНК до сих пор, это порядка 30 млн рублей в год, в основном идёт на откачку грунтовых вод. Там всё время работают насосы. Всё-таки затопление такого объекта является куда более опасным, чем пребывание в нынешнем виде.


 


— А что будет, если УНК всё-таки затопит?


— Никто точно не знает, но точно ничего хорошего.


 


— Для прокладки подземного тоннеля УНК были куплены дорогостоящие канадские комплексы LOVAT. Что с ними стало после остановки строительства?


— Их было минимум два. Один из них разобрали и перенесли в московское метро, где он и сейчас используется, насколько знаю. Другой вроде бы так и остался под землёй. У меня точных сведений нет. Какие-то специалисты говорят, что его вытаскивали вроде, но подтверждений я не находил.


 


— Можно ли назвать УНК самым крупным проектом советской науки?


— В СССР были более крупные проекты оборонного значения. Где-то на севере есть подземное сооружение более грандиозное, чем УНК. Там огромные тоннели вырыты, видимо, для подлодок.


 


— Встречал выражение применительно к УНК — «памятник советской науки». Вы согласны с этим? 


— Ну, это не совсем правильно. Памятник — это когда есть душевная нужда прийти и поклониться. Судьба проекта УНК, как и всякая незавершёнка, — это свидетельство чьих-то ошибок.


 


— По поводу окончательной консервации объекта. Вы упомянули, что в конце 1990-х появилось общее понимание, что реализовать его не удастся. Но когда именно вот эта неопределённость судьбы объекта вылилась в чётко принятое чиновничье решение?


— В 1998 году министром науки и технологий недолго был Владимир Булгак. Насколько я знаю, он и подписал, хотя сам я документа этого не видел. Но произошедший тогда в августе дефолт очень сильно ударил по экономике и, по сути, окончательно похоронил УНК.


 


— Подземное кольцо так или иначе есть, научных перспектив у него, как выясняется, уже нет, но можно ли его как-то использовать иначе?


— Первое — этот тоннель надо окончательно достроить, там всё ещё есть опасность его затопления.


 


— Какой участок незащищён?


— 6—7 км в северной части подвержены проникновению воды, поскольку ещё при проведении работ по доводке облицовки тоннеля изнутри остались места с небольшими протечками грунтовых вод. Поначалу поставили временную откачку поступающей воды — на поверхность выведен небольшой ручеёк, впадающий в естественный водоём, — да так и осталось. Средства на откачку воды, на устранение «залазов» в тоннель любопытствующих диггеров, на охрану и электропитание шахтных надстроек — всё это выливается в пару-тройку десятков миллионов рублей в год.


 


— Возможно ли такой гигантский объект как-то использовать в дальнейшем, пусть и не по прямому назначению?


— Навскидку можно назвать три варианта. Во-первых, если тоннель будет хорошо герметизирован, там можно железнодорожные испытания проводить, как-никак 21 км рельсового пути — и никаких помех. В Минтрансе как-то выражали заинтересованность на этот счёт, но опять же «денег нет, держитесь».


Во-вторых, тоннель можно использовать как индукционный накопитель электрической энергии, который можно задействовать в случае каких-то ЧП.


 


— Нечто вроде запасного аккумулятора в масштабах региона?


— Да. Вспомните 2005 год, когда из-за пожара на подстанции Чагино половина Подмосковья осталась без электричества. Таких бы последствий не было, если бы имелся такой накопитель, который может оперативно пополнять крупные электросети.


 


— Насколько это реально?


— Конкретный проект ИФВЭ по созданию такого накопителя на II инновационном форуме в 2007 году даже был представлен возглавлявшему тогда «Росатом» Сергею Кириенко (см. текст и фото).  Думаю, он помнит…


 


— Каков третий вариант?


— Выращивание шампиньонов.


 


— После железнодорожного полигона и гигантской батарейки звучит не так грандиозно.


 — Эти подземные пространства для этого отлично подходят. Температура там круглый год держится постоянная, в районе 18 градусов тепла, электричество есть.


 


— Руководство ИФВЭ пыталось что-то из этих вариантов реализовать на практике?


— Насколько я знаю, никаких поползновений со стороны руководства в этом плане нет. Они сидят тише воды ниже травы, сайт института сейчас — жалкое подобие прежнего, когда-то он был лучшим среди сайтов российских научных институтов. В целом ситуация не очень радужная: научное сообщество затихло — нет никакой полемики, обсуждения проектов каких-то, в наукограде Протвино практически перестал работать дом учёных в собственном смысле этого термина.


 


unk_alls2 (314x208, 71Kb)


   — Как я понимаю, кроме самого 21-километрового тоннеля успели   также построить несколько ответвлений и какие-то   дополнительные подземные помещения?


   — Да, они для кабельного хозяйства, есть ответвления для перспективных каналов.   Размах был широкий. В качестве расширения тоннеля на 50-метровой глубине был   сделан один большой экспериментальный зал специально под российско-     американский физический эксперимент «Нептун». Его объём составил около 10 тыс.   кубометров. Когда работы в нём были окончены, шахтёры сыграли там в футбол с   физиками.


 (см. - демо-макет отрезка тоннеля УНК по полному проекту на 6000 ГэВ, фото из журнала "Наука и жизнь" )


 


   — С учётом нынешней ситуации, в том числе политической,   туманными перспективами нашего будущего научного   сотрудничества с Западом, есть ли какой-то смысл проект УНК как-     то реанимировать по его прямому назначению?


   — Сейчас, наверное, ни один физик не скажет, что в этом есть необходимость. До сих пор все наши физики заряжены на обработку данных, полученных в ходе экспериментов в БАК. Наши учёные по договорам получали доступ к большим массивам данных, и часть их до сих пор находится в обработке. Думается, когда закончат с этими материалами, будут, возможно, дальше участвовать уже в новых проектах ЦЕРН.


 


— Такой грандиозный подземный объект, как УНК, после остановки работ и консервации привлекал немало разного рода сталкеров, диггеров и прочих искателей приключений. Насколько легко туда было проникнуть и как обстоит дело сейчас?


— Да, было слишком много точек входа на объект. Там же на всём протяжении кольца было несколько шахтных станций, через которые можно было спускаться в тоннель с поверхности, некоторые даже были оборудованы лифтами. Но, в принципе, и без них для диггеров это не такая проблема — спуститься на 40—60 м. Когда такие посетители совсем уж зачастили, было принято решение закрыть и заварить лишние двери. Тем более были и случаи хищений оборудования из некоторых наземных сооружений проекта УНК. В общем, эту проблему, можно сказать, решили.


 


— А что видели те, кто спускался в УНК? Там же один сплошной тёмный тоннель.


— Освещение как таковое там есть. Я с 2008 года в тоннеле не был и не знаю, как сейчас обстоят дела, но раньше с разрешения директора института его можно было включить во время экскурсий.


  (использованы также 4  фото из публикации в RT)


 


 


 Примечание публикатора: Поскольку ответы в ходе интервью наговаривались в основном "из головы", в опубликованном на портале RT тексте были некоторые неточности, которые я в этой републикации в минимальной степени поправил. Плюс добавил немного уточняющих ссылок и более относящихся к тексту фото (к примеру, на портале помещено аэрофото какого-то другого наукограда, не Протвино).


Физика - науке точная, и что была бы наша жизнь без её плодов предшествовавших исследований?


  С ув. и пр. - Г. Дерновой   


 

Метки:   Комментарии (0)КомментироватьВ цитатник или сообщество
Rewiever

Радиация в Протвино, Велихов vs УНК, юбиляры

Вторник, 23 Апреля 2019 г. 20:51 (ссылка)


Страничка № 252 


 Странички архивариуса: "Ровно 20 лет тому назад"   


 


Usklogo2 (272x64, 9Kb)


  Не прошло и месяца после предыдущего выпуска институтской газеты (всего 3 недели), как к  читателям поступил новый - за 23 апреля 1999 года. В предыдущем году, к примеру, такого короткого периода без "Ускорителя " не случалось, так что сохранившиеся ещё  тогда читатели (оптимисты по жизни) не преминули заметить: "А жизнь-то налаживается!"


 


   Но смотрим, что у нас в "Ускорителе" №№ 5-6 (№№ 251-252, сдвоенный выпуск - 8 полос).


Сразу же замечу, что эта Страничка (обзор содержания выпуска) будет заметно отличаться от привычного формата (пересказ в сокращённом изложении +  краткие комментарии) практически всех публикаций каждого конкретного выпуска в порядке их опубликования. Дело в том, что редакция опубликовала непривычно большую статью (сплошной текст, более двух полос кряду), которую я посчитал нужным дать в обзоре полностью. И чтобы выдержать размер этих обзоров, большинство остальных публикаций выпуска приведу в предельно сокращённом варианте, уж не взыщите...


 


   Вот эта статья (иллюстрации к статье - из сети, вставлены при републикации):


  - «Успокаиваться рано» (стр. 5-7)«В стране, как и в мире в целом , в последние годы происходит повсеместное ужесточение норм радиационной безопасности как фактора, влияющего на здоровье народонаселения. Под­московье не осталось в стороне от этого процес­са. В начале года Московской областной Думой была принята государственная программа «Ра­диационная безопасность в Московской области». 


rad_docmo1 (270x142, 37Kb)


Впрочем, считается, что у жителей Протви­но и Серпухова нет особых поводов для волнения. Хотя наш институт включен в перечень восьми «особо радиационно опасных произ­водств и объектов», действующих в области, это связано лишь с особым характером работ само­го мощного в стране ускорителя заряженных частиц. Характерно, что среди указанных в Гос­программе радиационно опасных аномалий тех­ногенного характера (в Раменском, Электроста­ли, Балашихе, Солнечногорске и др.) нет ни од­ного с привязкой к нашему региону. А в указанных городах виновниками аномалии явля­ются свалки промышленных отходов и в особен­ности отходов металлургии (всевозможные шла­ки)Поскольку наш регион признан спокойным в этом отношении, то нет и соответствующей строчки в данной Госпрограмме, нет нам и средств на проведение соответствующих иссле­дований. В то же время отмечено, что степень изученности радиационной обстановки по области невелика, удовлетворительно исследовано не более 15 процентов территории. Гораздо более полно исследованы окрестности Протвино, и всё это благодаря целенаправлен­ной деятельности Отдела радиационных исследований нашего института. Но, как считают специалисты ОРИ, успокаиваться рано, и ради­ационный мониторинг нужно продолжать. Подробно об этом рассказывает начальник ла­боратории ОРИ Ярослав Николаевич Расцветалов.


   Сначала поговорим о радиаци­онном фоне: что это и чем он определяется. Прежде всего различают две его составляющие - естественный (природный) и техно­генный (привнесенный в окружаю­щую среду технической деятельно­стью человека). Природная составля­ющая обусловлена космическим из­лучением и естественными радионуклидами (ЕРН), присутствующими практически во всех объектах внеш­ней среды. Эти два природных источника создают тот радиационный фон, воздействию которого человече­ство подвергается в течение всего пе­риода его существования. Уровень естественного фона колеблется во времени и зависит от географии кон­кретной местности. С точки зрения облучения человека наибольшее зна­чение имеет содержание в объектах внешней среды природных радиону­клидов уранового и ториевого рядов (материнские радионуклиды — уран-238 и торий-232) и калия-40. Внешняя компонента естественного фона, равная 7,5 мкР/ч, соответству­ет примерно трети полной мощности дозы, получаемой населением. В пределах Европейской террито­рии России внешняя составляющая естественного фона колеблется по данным многолетних наблюдений в пределах от 6 до 15 -17 мкР/ч. Нор­мальным считается фон в пределах до 20 мкР/ч.


Здесь уместно отметить, что природные источники ионизи­рующего излучения вносят наибольший вклад (около 70%) в об­щую дозу облучения населения от всех воздействующих на него источ­ников ионизирующего излучения. Значительную часть этой дозы чело­век получает во время нахождения в жилых и производственных помеще­ниях, где, по оценкам Научного ко­митета по действию атомной радиа­ции ООН, жители промышленно развитых стран проводят около 80% времени. В помещениях человек подвергается воздействию как внеш­него гамма-излучения, обусловлен­ного содержанием ЕРН в строитель­ных материалах, так и внутреннего, связанного с вдыханием содержа­щихся в воздухе дочерних продук­тов распада радона (ДПР), как и самого радона (элемент таблицы Менделеева,  бесцветный инертный газ; радиоактивен, стабильных изотопов не имеет, может представлять опасность для здоровья и жизни. При комнатной температуре является одним из самых тяжёлых газов. Наиболее стабильный изотоп (222Rn) имеет период полураспада 3,8 суток). В соответствии со ст. 15 Федераль­ного Закона «О радиационной безо­пасности населения», облучение на­селения, обусловленное радоном, продуктами его распада, а также другими долгоживущими природны­ми радионуклидами, в жилых и про­изводственных помещениях не дол­жно превышать установленных нор­мативов. Нормативы облучения населения устанавливаются Нормами радиационной безопасности (НРБ-96), введенными в действие Постано­влением Госсанэпиднадзора №7 от 19.04.96 г. По этому нормативу ве­личина среднегодовой эквивалент­ной равновесной объемной активно­сти изотопов радона в воздухе жилых помещений эксплуатируемых зданий не должна превышать 200 Бк/мЗ (для вновь построенных - 100 Бк/мЗ), а мощность дозы гам­ма-излучения в помещениях не дол­жна превышать мощность дозы на открытой местности более чем на 0,3 мкЗв/ч (30 мкР/ч). 


Техногенная составляющая радиа­ционного фона обусловлена загряз­нением территорий в результате вы­бросов от испытаний ядерного оружия, предприятий ядерно-топлив­ного цикла, сжигания угля и нефте­продуктов в тепловых электростан­циях (ТЭЦ), при добыче полезных ископаемых и т.д.. Наиболее значи­мыми радионуклидами техногенного фона являются долгоживущие - це­зий-137 и тритий. Во многих случа­ях техногенную составляющую (ког­да она не превышает пределов коле­бания естественного фона) отдельно не выделяют и говорят о сложив­шемся радиационном фоне данной местности.


  Ускоритель протонов на энер­гию 70 ГэВ Института физи­ки высоких энергий в прин­ципе тоже является источником ио­низирующего излучения для окру­жающей среды. Прежде чем харак­теризовать его с этой стороны, полез­но знать следующее. Опыт эксплуа­тации и радиационного мониторинга на нашем ускорителе и аналогичных ускорителях за рубежом показал, что (в отличие от ядерных реакто­ров):


«при оценке радиационной опасности для населения и окружающей среды следует иметь в виду такие особенности ускорите­лей:


—  радиация высокой энергии,  а также связанные с ней нейтронное и мюонное излучения возникают толь­ко во время работы ускорителя. При выключении ускорителя эта радиа­ция исчезает. Остающаяся наведен­ная   радиоактивность  оборудования опасна только для персонала,постоянно обслуживающего ускоритель. Оста­точные   радиоактивности   воздуха, грунта и грунтовых вод на ускорите­лях малой интенсивности (меньше 5 х 1011 протонов в секунду) пренебре­жимо малы;


—  никакая неисправность аппара­туры и никакие ошибки персонала не могут привести к сколь-нибудь существенному (а тем более неограниченному) росту интенсивности (то­ка) пучка, к значительному возрас­танию уровня излучений вокруг ус­корителя и к ухудшению радиаци­онных условий,  которые могли бы оказаться опасными для населения близлежащего района».


Взятое в кавычки выписано из про­екта нормативного документа «Са­нитарные правила проектирования и эксплуатации ускорителей и нако­пительных колец протонов и тяже­лых ионов высокой энергии».


В выбросах ускорителя (воздух из систем охлаждения) присутствуют, в основном, короткоживущие радио­нуклиды (с периодом полураспада от единиц до десятков минут)  -  углерод-11, азот-13, кислород-14 и кислород-15. Поскольку они быстро распадаются, то местность не загрязня­ют, а их небольшой вклад во внешний ра­диационный фон учиты­вается авто­матически при проведении радиационного мо­ниторинга внешней среды. Из основ­ных долгоживущих радионуклидов могут присутствовать бериллий-7 и тритий.Суммируя вышесказанное, для на­шего региона радиоэкологическое состояние будет оцениваться общим фоном внешнего гамма-излучения, содержанием радионуклидов цезий-137, тритий, бериллий-7, а в некоторых случаях и содержанием ЕРН (радиоактивность строитель­ных материалов и радон в воздухе).


  Радиационный мониторинг тер­ритории непосредственно вок­руг ускорителя проводился Отделом радиационных исследова­ний ИФВЭ практически с самого на­чала после его запуска. В дальней­шем границы территории постоянно расширялись. В последние десять лет радиационно-экологический контроль проводится на территории техплощадки, в санитарно-защитной зоне, в прилегающих окрестно­стях и в самом городе.


В 1996 г. целевым образом на базе Отдела РИ была создана и аттестова­на лаборатория в составе Эколого-аналитического центра ИФВЭ по охране окружающей природной сре­ды. В функции лаборатории входит постоянное мониторирование радиа­ционной обстановки (радиационного фона) на территории техплощадки, ежедневное (кроме выходных, праздничных и дней профилактики оборудования) измерение мощности дозы внешнего гамма-излучения в контрольных точках города и его ок­рестностях, контроль содержания радионуклидов в воздухе, воде и почве по план-графику, утверждае­мому главным инженером Институ­та.


radcontrols (160x108, 12Kb)


В составе нашего подразделения имеется мобильная лаборатория на базе автомобиля УАЗ, стационарная низкофоновая радиометрическая ла­боратория и автоматизированный пост радиационного мониторинга в здании 110 техплощадки. Имеется также оборудование для контроля содержания естественных радионук­лидов в объектах внешней среды (строительные материалы, продукты питания и т.д.), для контроля содержания радона в воздухе помещений зданий жилого или промышленного назначения. При определении содер­жания трития во внешней среде и в технологических помещениях уско­рителя У-70 проводилась совмест­ная работа со специализированными лабораториями   ВНИИЭФ (г. Арзамас) и ИЭМ (г. Обнинск). 


 


Основные результаты радиационно-эко­логического обсле­дования нашего региона следующие. Общий уро­вень внешнего гамма-фо­на колеблется в пределах 6 - 20 мкР/ч. Содержание техногенного цезия-137: в почве 1 - 10 мкКи/км2  (удовлетворительным по­казателем считается до 1000 мкКи/км2); в воздухе 10-19 - 10-18 Ки/л, в воде и природных осадках 10-12 - 3x10-11 Ки/л (норматив по НРБ-96 : 7,8х10-13 и 2,6x10-9 Ки/л соответст­венно), что в 100 и более раз ниже допустимого. По содержанию трития в воздухе было выполнено специальное исследование по образованию его в наиболее «горячих» точках на ус­корителях: линейный ускоритель И-100, бустер и У-70. Диапазон из­менения концентраций трития со­ставил 1,1 х10-14- 6,1x10-12 Ки/л, т.е. наш ускоритель генерирует три­тий с концентрациями в 100 раз меньшими, чем допустимые (по НРБ-96 допустимое для населения содержание трития в воздухе — 2,1x10-10 Ки/л)  без учета даже его последующего разбавления в атмо­сферном воздухе. Примерно такая же ситуация и по содержанию три­тия в воде. Анализировалась вода в системах охлаждения  электромагнитов бустера (6,3x10-9  Ки/л) и У-70 (4,8x10-9 Ки/л), вода на входном коллекторе очистных сооружений (1,3x10-10 Ки/л), питьевая вода (1,3x10-10 Ки/л) и осадки (7x10-11 Ки/л). Эти уровни на два и более порядков ниже допус­тимых (8,1x10-7 Ки/л). Интересно от­метить, что вода в реке Протва содер­жит тритий в несколько больших концентрациях (6x10-10 Ки/л), чем наши выбросы из очистных сооруже­ний (1,3x1010 Ки/л), что, по-видимому, обусловлено  сбросами г. Обнинска.


Несколько слов о радио­нуклиде бериллий-7. Он присутству­ет в выбросах из вентсистем ускори­теля, но в то же время дан­ный нуклид образуется в ат­мосфере под действием высо­коэнергетического космичес: кого излучения. Его период полураспада (53,3 дней) сравним с продолжительно­стью стандартного сеанса ус­корителя, поэтому, измеряя его содержание в атмосфер­ном воздухе до и после сеан­са, можно было бы оценить влияние ускорителя по дан­ному радиационному факто­ру на окружающую среду. Для этого мы регулярно проводили измерения во время сеансов работы ускорителя и в промежутках, когда ускоритель не работал (такие проме­жутки в последнее время составляли до 1 года). Однако на фоне сезонных колебаний содержания бериллия-7 (1,1x10-17 - 4,8x10-17 Ки/л) в воздухе (из-за вариации интенсивности космического излучения) добавку в его концентрацию за счет работы уско­рителя мы не наблюдали. Это озна­чает, что в данный радиационный фактор ускоритель вносит неболь­шой вклад (уж во всяком случае не более 20—30%). Попутно замечу, что допустимое содержание берил­лия-7 в воздухе (7,6x10-11 Ки/л) на много порядков больше вышеуказан­ных величин.


Интересовались мы и пробле­мой облучения населения от природных источников ра­диоактивности. В первую очередь были обследованы и сертифицирова­ны местные строительные материа­лы: керамзит и изделия на его осно­ве (керамзитовый завод и карьер «Дашковка», г. Серпухов), кирпич (Серпуховский кирпичный завод и карьер завода), песок, гравий, ще­бень (карьеры «Ока», «Съяново», «Серпухов №9», «Серпухов №1», «Кузьмищево»). Все они по радиаци­онному фактору соответствуют пер­вому классу, т.е. применяются во всех видах строительства без ограничений. В отношении привозного строительного сырья это далеко не так. В частности, гравий и щебень, привезенный из Кривого Рога и Игнатполя (Украина), а также из Каре­лии относились, по нашим данным, к третьему классу, и его использова­ли только для дорожного строитель­ства вне города.


  Проводились и отдельные из­мерения  содержания  радионуклидов в продуктах пита­ния. Из наиболее значимых резуль­татов   можно   указать   следующие. Сразу после известных «чернобыль­ских событий» администрация Ин­ститута два года подряд направляла нас на оснащенной мобильной лабо­ратории в Белоруссию для контроля за закупками картофеля для Протви­но. Прямо на месте отгрузки карто­феля мы развернули гамма-спектро­метрический комплекс и оперативно контролировали процедуру отгруз­ки. Попутно мы измеряли куплен­ные молочные продукты, грибы во время остановок в пути и везде отме­чали наличие цезия-137. До сих пор в лаборато­рии хранят­ся те высушенные грибы, ко­торые ино­гда исполь­зуются как «неаттестованный ис­точник цезия-137». Примерно в то же время совместно   с СЭС мы провели обследование привозного мяса из г. Гомеля, в котором содержались значительные концент­рации цезия-137 и цезия-134. На основании наших данных три вагона с мясом были отправлены поставщи­ку обратно. Был еще случай с содер­жанием цезия-137 в чае, расфасо­ванном в г. Серпухове. Эта информа­ция была доложена администрации Института и СЭС. За многолетний период времени постепенно накопи­лась некоторая информация и по другим продуктам питания и сель­ского хозяйства, образцы которых приносили в лабораторию сотрудни­ки Института частным порядком. 


10rmapmo1 (282x235, 96Kb)



Несколько слов о радоновой проблеме. В нашем регионе основной источник поступле­ния радона - эксхаляция (выделе­ние по порам, микротрещинам и гео­логическим неоднородностям) из больших глубин через грунт. Образу­ется он при распаде урана-радия, со­держащихся в геологических разре­зах глубоко под землей. По этой при­чине наибольшие его концентрации встречаются в подвальных помеще­ниях и на первых этажах домов. Вы­деление его из почвы крайне неодно­родно, и для нашего района концен­трации подпочвенного радона колеб­лются от 20 - 40 кБк/м3 («спокой­ная» геологическая ситуация) до 1000 кБк/м3 и более в отдельных ло­кальных местах. В 1989-1990 г.г. при проходке туннеля УНК мы про­водили радоновую съемку и обнару­жили концентрации радона в возду­хе от 600 до 1000 Бк/м3 , а в закры­том объеме породы до 6000 Бк/м3 . В результате этих исследований были даны рекомендации по режиму про­ветривания рабочих отсеков тунне­ля. Указанную проблему подваль­ных помещений и первых этажей мы наблюдали в г. Серпухове, где, по за­казу серпуховской администрации и ЦГСЭН, проводили обследования школ и детских дошкольных учреждений. В нашем городе, по заказу протвинской администрации совме­стно с протвинской ЦГСЭН, в тече­ние 1993 - 1997 г.г. был также вы­полнен небольшой цикл работ по об­следованию школ и детских дошко­льных учреждений. К счастью, пре­вышений нормативов обнаружено не было: наибольшие значения эквива­лентной равновесной объемной активности радона составили 100Бк/м3 в детском комбинате №6 и 110 Бк/м3 в школе №2, а превышение мощно­сти дозы гамма-излучения внутри помещений над фоном на открытой местности составило максимум 2 - 3 мкР/ч.


  Думаю, что эти обследования полностью не закрыли радоновую проблему для нашего города особенно в связи с интенсив­ным использованием подвальных и полуподвальных помещений под дет­ские спортивные клубы, магазины и офисы. В 1997 г., в плане выполнения одного из пунктов Соглашения по охране труда Коллективного дого­вора на 1997 г., была произведена радоновая съемка на 18 постах охра­ны (проходных) объектов Института. Вследствие хорошего проветривания обследованных помещений уровни радона в воздухе не превышали 30 Бк/м3 (прогноз для закрытых поме­щений - до 200 Бк/м3). Кстати, проветривание помещений очень эф­фективный способ снижения концен­траций радона в воздухе.


  Наконец, совсем коротко, о на­ших производственных проб.лемах, Давно пора обновить парк используемой аппаратуры, ко­торая устаревает физически и мо­рально. Но это не самое главное. В прошлом году истек срок аттестации нашей лаборатории. Для его продле­ния необходимо было оплатить мет­рологической организации (ВНИИФТРИ) не очень большую сумму за очередную метрологическую поверку наших приборов. За малым исключе­нием, в Институте денег не нашлось, поэтому в прошлогодней аттестации мы резко сократили сферу своих воз­можностей. В текущем году положе­ние выправляется, т.к. это напря­мую связано с предстоящим лицен­зированием деятельности Института, в частности, в области радиоэкологи­ческого мониторинга.


   Но остается «за кадром» кадровая проблема. В разное время данными работами за­нимались, в среднем 8 - 10 человек. К настоящему времени остался на­столько небольшой костяк специали­стов, что не грех и перечислить: на­учные сотрудники Геннадий Ивано­вич Крупный и Андрей Антонович Янович и водитель-дозиметрист мо­бильной лаборатории Михаил Нико­лаевич Омелянович. Надеемся, что во второй половине текущего года с помощью администрации Института мы сможем пополниться кадрами, «доаттестоваться» и полностью реализовать свои возможности.


 Мы все­гда открыты для контактов, наши телефоны: 71-85-53 (Я.Н. Расцветалов); 71-31-44 (В.Н. Кустарев); 71-34-62 (В.Н. Лебедев)»


  (примечание нынешнего публикатора - последние двое, к глубокому сожалению, уже ряд лет не с нами...).


     Вот такая статья. Разумеется, содержание её хорошо бы довести до сведения более широкого круга читателей. Надо бы привлечь и возможности соцсетей, где как раз и встречаются порой досужие реплики о "радиации в Протвино"...


 


    В выпуске наличествует ещё одна достаточно обширная статья (полторы полосы, стр. 4-5) из сферы деятельности ИФВЭ, но - сугубо публицистического свойства, даже под задиристым заголовком. Вот выдержка из её начальных абзацев: 


ep_velikhov2 (112x146, 14Kb)


  - «Так в чём же сила науки?» (стр. 4-5) «...Обширное интервью академика Е.П. Велихова "Российской газете" от 11.02.1999 г., опубликованное под названием «В чем сила науки?» представляется полезным и интересным. Тем более, что скоро будет отмечаться 275-летие РАН, прямо упомянутое в интервью, а затем состоятся новые академические выборы, о которых сказано косвенно. Некоторые моменты в рассуждениях Евгения Павловича побуждают к дискуссии... Совершенно искренне разделяя многие тезисы, высказанные уважаемым Евгением Павловичем (например - о чрезмерном росте числа так называемых "общественных академий", об определенном "засилии бюрократии" в структурах, управляющих наукой, об угрозе исчезновения "класса младших научных сотрудников", и др.), в то же время  с некоторыми хотелось бы поспорить. В споре, как известно, и обнаруживается истина. В частности, людям, долгое время работающим в физике высоких энергий, представляется достаточно спорным высказанное в интервью отношение к конкретной проблеме завершения строительства нового ускорителя заряженных частиц в Институте физики высоких энергий (г. Протвино Московской области, близ Серпухова). К сожалению, касательно "Серпуховского ускорителя" (так в тексте) нашим в данном случае оппонентом допущен ряд неточностей, которые хотелось бы поправить - хотя бы из естественного чувства уважения к читателям.. » - и здесь я оборву цитирование, поскольку, когда из "РГ" мне дали понять, что не хотели бы вступать в полемику с уважаемым академиком, я предложил несколько дополненный текст  к публикации в газете Минатома "Атом-пресса". К некоторому моему  удивлению (хотя это было далеко не первое обращение в редакцию "АП", и почти все были результативными), статья оперативно вышла в свет, причём полностью (как тогда в "Ускорителе", так и сейчас -  в блоге автора, см. весь текст  тут). Гласность, понимаешь....  


 


  Ввиду сравнительно небольшого размера приведу здесь ещё две публикации из выпуска - тем более, что они носят пздравительно-биографических характер  (и единственные в газете в сопровождении фото, правда, разного качества)  в отношении двух видных физиков-экспериментаторов  ИФВЭ, работающих и поныне:


60vkryshkin1 (116x160, 13Kb)


  -  «Доктору физико-математических наук В.И. Крышкину – 60 лет!» (стр.2) -  «Коллеги, дирекция и   ОКП-204  по­здравляют Виктора Ивановича с юбилеем и желают ему крепкого здоровья и новых творческих успе­хов.   Виктор Иванович был приглашен на работу в ИФВЭ в январе 1973 го­да из Томского института ядерной физики, где   в   1970 году защитил диссертацию на соискание ученой степени кандидата физико-матема­тических наук. За годы   работы в   нашем институте он принял участие в десятках фи­зических исследований – в  ИФВЭ и в   сотрудничестве   с мировыми   научны­ми центрами. Является автором десятков научных публикаций, в 1985 году   стал доктором наук и в на­стоящее   время руководит лабораторией и является одним из авторитет­нейших ученых   в области ФВЭ. За достигнутые успехи   дирекция и ОКП-204 объявили Виктору Ивано­вичу благодарность и вручили   Грамоту ИФВЭ. Коллеги из ЦЕРНа также не   забы­ли о юбилее Виктора Ивановича и прислали ему поздравление с   поже­ланием новых достижений в сотруд­ничестве   по программе RDMS/CMS.


   По случаю юбилея мы попросили Виктора Ивановича поделиться сво­ими планами.


  —  Вы отдали науке более двадца­ти шести лет. Когда Вам лучше всего работалось?


—  Мне всегда работалось хорошо, где бы я ни  находился,  в ИФВЭ, ФНАЛе или ЦЕРНе.  И если я не стал лауреатом Нобелевской премии по физике, то это не потому, что у меня  не  было  условий,   а  потому, что, ну, наверное, я сам такой. Каж­дый делает то, что он может... Та работа, что ведется сейчас в нашем институте, определя­ет все характеристики адронного калориметра CMS, хотя по денежному взно­су она и не составляет большой его доли. Она определяет свойства этого калориметра потому, что является единственным активным его элемен­том. Мы уже изготовили и отправи­ли в ЦЕРН все для его прототипа. В настоящее время оборудуем новое помещение в 200 квадратных метров для создания поточной сборочной линии. Работы предстоит много...» 


   И


55zaitse2 (120x134, 13Kb)  - «Профессору А.М. Зайцеву - 55 лет» (стр.3) - «Наступила пора зрелости и сверше­ний для известного физика- экспери­ментатора, признанного специалиста в области физики высоких энергий. Научную деятельность   А.М.Зайцев начал в 1967 году в ИФВЭ. Он уча­ствовал в первых экспериментах на У-70: поиски кварков, наблюдение   антигелия-3, исследование инклю­зивных реакций. А.М.Зайцев внес решающий вклад в создание уста­новки ЛВПТОН и   исследования на ней... В последние годы под его руководством создана крупная экспе­риментальная установка ВЕС,   не имеющая аналогов в стране и за ру­бежом. На основе полученных дан­ных, превышающих всю мировую   статистику   в области мезонной спек­троскопии, были опубликованы при­оритетные результаты...А.М.Зайцев   принимает участие в эксперименте на установке ДЕЛФИ на встречных пучках в ЦЕРНе, где возглавляемый им   коллек­тив провёл методические исследова­ния по калориметрии, изготовил один из детекторов установки и   получил ряд физических результатов -  таких, как ограничение на массы бозонов Хиггса, образование В-мезонов в распадах Z-бозонов. В настоящее время А.М.Зайцев участвует в подготовке крупнейшего эксперимен­та АТЛАС на Большом Адронном коллайдере ЦЕРН, являясь координа­тором российских участ­ников в этом эксперимен­те. A.M. Зайцев сочетает плодотворную на­учную работу с преподава­тельской  деятельностью, являясь профессором МФТИ, где он читает  курс лекций по физике элемен­тарных частиц. Его преподавательская  деятельность была отмечена гран­том  Международного научного   фонда и  званием Соросовского  профессора... О том, что более всего занимает профессора А.М.Зайцева сегодня, рассказывает он сам: ... На сегодня ситуация сложилась та­ким образом, что только гармоничное сочетание исследований на У-70 и на зарубежных установках позво­ляет нашему коллективу жить пол­нокровной научной жизнью, полу­чать достойные физические резуль­таты, делать новую аппаратуру и с некоторым оптимизмом смотреть в будущее. Конечно, в каждом из направлений есть свои проблемы. Если практиче­ская целесообразность участия в за­рубежных экспериментах почти ни у кого, а особенно у участников, не вызывает сомнения, и от желающих поехать в Женеву нет отбоя, то в не­обходимости серьезного отношения к работе на У-70 приходится убеж­дать. Проблема здесь не столько в научном содержании проводимых на У-70 экспериментов - ряд из них выполняется на вполне достойном уровне и получает достойное призна­ние, - сколько в оплате труда. Без ра­дикального улучшения в этой сфере наш научный потенциал будет поте­рян навсегда».


 


   Здесь же рядом на странице - публикация  покороче, того же свойства, но без фото, под  названием  «Профессору К.П. Мызникову - 70 лет»  - с поздравлениями и добрыми пожеланиями на будущее, причём подписанная лично директором ИФВЭ академиком А.А. Логуновым. К великому сожалению, "будущее" оказалось не очень долгим, Кирилла Петровича уже много лет нет с нами...


 


   И ещё поздравительные тексты:


 -  «Руководителю атомной отрасли Е.О. Адамову 60 лет» (стр. 1) - этот поздравительно-биографический текст  тоже подписан академиком А.А. Логуновым, но выдержан он не в столь лирических тонах, как преддыдущий.  Тут я замечу, что Евгению Олеговичу 28 апреля с.г. будет уже 80, а прошедшее двадцатилетие очень многое для него вместило. Вплоть до ареста в Швейцарии в 2005-м, экстрадиции, уголовного дела в России... Сейчас он - руководитель проекта "Прорыв", по созданию замкнутого ядерного цикла...


 - «С юбилеем!» - )стр. 2) -  Веру Петровну Алееву  не очень многословно, но душевно поздравили товарищи по работе (хотя и несколько запоздало).  Подписано - "Коллектив бухгалтерии ИФВЭ и ОКП-204". Сейчас Вера Петровна на пенсии, но работает в городском выставочном зале...


 


  Возвращаясь на титульную страницу, отмечу наличие грустноватого поздравительного текста по случаю государственного праздника  - Дня науки, написанного от имени редакции газеты. Видимо, не очень праздновалось тогда по сему поводу, да и уже в июне последовал указ президента Ельцина о переносе этого профессионального праздника на 8 февраля - в честь даты образования Российской Академии наук, которой тогда исполнилось 275 лет. Так и празднуем поныне... 


 


  Здесь же можно видеть небольшой отчёт учёного секретаря Ю.Рябова о том, что  «...18 марта этого года во время посещения ЦЕРНа директором ИФВЭ академиком А.А. Логуновым дипломы Почетного доктора наук ИФВЭ были вручены Х.Шопперу, Б.Койперу, Ж.-П.Строоту и Х.Ленгелеру», с предложением смотреть подробности  фото на сайте ИФВЭ (на http://www.ihep.su/ihep/koi8/ihep28.htm). Увы, ныне адрес нерабочий -  сожалению, многие страницы из истории ИФВЭ были просто потеряны в процессе "оптимизации" при директоре Н. Тюрине...


 


    Ещё один отчёт, но размером более полу-полосы, подготовил в выпуск активный в то время внештатный корреспондент Леонид Ширшов. Он побывал на ежегодной научной конференции по прикладной сверхпроводимости в Москве (ИСФТТ) и поделился своими впечатлениями в виде обзора докладов под общим названием "На пороге новых технологий" (стр. 8)Всё это было интересно, но - вне непосредственной тематики ИФВЭ. 


 


    И в заключение   - о печальном. Два коротких некролога по профсоюзной линии - в память о Тамаре Михайловне Сырутович и Николае Николаевиче Кудрявых. Возможно, кто-то вспомнит их добрым словом...


Архивариус


 

Комментарии (0)КомментироватьВ цитатник или сообщество
Rewiever

Так в чем же сила науки?

Среда, 17 Февраля 1999 г. 14:19 (ссылка)


(Перечитывая Велихова) 



     Нынешнее состояние отечественной фундаментальной науки и не очень радужные (если не сказать - тревожные) её дальнейшие перспективы - вопрос далеко не простой и уж совсем не праздный. Он заслуживает серьезного, обстоятельного и хорошо аргументированного разговора в СМИ, тем более что в потоке публикаций под "научной вывеской" часто можно увидеть всякого рода "развлекаловку", не имеющую отношения к подлинной науке.



    В этом смысле обширное интервью академика Е.П. Велихова "Российской газете" 11.02.1999 г., опубликованное под названием «В чем сила науки?» представляется полезным и интересным. Тем более, что скоро будет отмечаться 275-летие РАН, прямо упомянутое в интервью, а затем состоятся новые академические выборы, о которых сказано косвенно. Некоторые моменты в рассуждениях Евгения Павловича побуждают к дискуссии, но, к сожалению, мои предложения на этот счёт не встретили понимания в редакции "РГ", а посему хотелось бы поделиться некоторыми возникшими ответными соображениями с читателями газеты атомной отрасли, которым, возможно, более близок  предмет возникающего публицистического "продолжения" интервью.



    Совершенно искренне разделяя многие тезисы, высказанные уважаемым Евгением Павловичем (например - о чрезмерном росте числа так называемых "общественных академий", об определенном "засилии бюрократии" в структурах, управляющих наукой, об угрозе исчезновения "класса младших научных сотрудников", и др.), в то же время  с некоторыми хотелось бы поспорить. В споре, как известно, и обнаруживается истина.   



velikhov (160x237, 6 Kb)



  В частности, людям, долгое время работающим в физике высоких энергий (ФВЭ - одно из признанных в мировой и отечественной науке направлений научного поиска, без которого немыслим прогресс в решении целого ряда фундаментальных вопросов познания человеком микро- и макромира), представляется достаточно спорным высказанное в интервью отношение к конкретной проблеме завершения строительства нового ускорителя заряженных частиц в Институте физики высоких энергий (г. Протвино Московской области, близ Серпухова). К сожалению, касательно "Серпуховского ускорителя" (так в тексте) нашим в данном случае оппонентом допущен ряд неточностей, которые хотелось бы поправить хотя бы из естественного чувства уважения к читателям.



    К примеру, развивая исключительно верный тезис о том, что "...для того, чтобы добиться больших результатов, надо преследовать большие цели, преодолевать большие препятствия, следовать большим примерам...", Евгений Павлович (см.) переходит к ускорительной тематике следующим образом: "Вспомним историю с академиком Будкером. Он был пионером в изобретении и разработке метода встречных пучков - источников синхротронного излучения... В середине семидесятых... я предложил придать работам по встречным пучкам высший приоритет... На это предложение вице-президент, отвечавший тогда за физику, сказал: "сначала достроим Серпуховский ускоритель, пучки - потом". Мы его строили, строили, наконец перестали..."



    Оставим без комментария своеобразную трактовку встречных пучков, как источников синхротронного излучения (обычно используют специализированные для этих целей электронные синхротроны). А что касается Серпуховского ускорителя - тут, по-видимому, у академика произошла своеобразная "аберрация зрения", смещение целых временных пластов. В середине 70-х ни вице-президент РАН (А.А. Логунов), ни кто-либо другой не мог сказать "сначала достроим", поскольку до начала этой стройки оставалось ещё лет десять. Именно к середине 70-х запущенный в Протвино в 1967 году ускоритель ИФВЭ У-70 на энергию 76 ГэВ, около 5 лет остававшийся самым мощным в мире и проработавший в этом качестве исключительно успешно (даже только один пример - экспериментальное доказательство существования кварков, - свидетельство тому), потерял "пальму первенства". Входили в строй более мощные ускорители ФНАЛа (США) и ЦЕРНа (Западная Европа), и центр внимания мирового научного сообщества перемещался туда. 



     Наша страна (в лице РАН и других структур, управлявших наукой) задумала новый выход на передовые рубежи в мире, и появился проект нового протонного ускорительно-накопительного комплекса с использованием готового У-70 в качестве "разгонной ступени". Разумеется, новосибирский проект нового (наряду с существующим) электрон-позитронного коллайдера никем тогда в качестве альтернативы не предлагался, да и решение вопроса не могло происходить на уровне не названного "вице-президента". Евгений Павлович, наряду с членством в РАН состоявший также и в ЦК КПСС, и в Верховном Совете, прекрасно знал существовавший механизм принятия государственных решений, хотя детали, что понятно, мог и забыть...



    Но вышеприведенная цитата - не единственная в интервью, вызывающая возражения. Вторично возвращаясь к теме Серпуховского ускорителя (что само по себе - и большая честь, и вызывает новые вопросы), Евгений Павлович продолжает свою мысль:



".. .Еще 15 лет назад стало ясно, что Серпуховский ускоритель мы никогда не построим, тем не менее постоянно вбухивали туда огромные средства, отрывая их от действительно необходимых перспективных работ. А теперь требуют такие же суммы, но не для того, чтобы ускоритель достроить, а чтобы в нем лягушки не квакали... такой результат надо бы обсудить, определить виновных и спросить с них. Нельзя же в самом деле наносить масштабный вред государству и не чувствовать за собой вины".



    Отвлекаясь от предложенного агрессивного уровня полемики, согласимся, что "надо бы обсудить". Крайне интересно было бы узнать, в какой момент и кому 15 лет назад, когда наша стройка только-только разворачивалась, "стало ясно, что никогда не построим"? Ведь на самом деле было ровно наоборот - выпускались правительственные и партийные решения о строительстве нового ускорителя, подключалось большое количество (более 800!) предприятий и организаций огромной страны, для сооружения  подземного тоннеля УНК сюда переселяли метростроителей из Минска, Харькова, горнопроходчиков с  БАМа...  



    Что же молчали неназванные "ясновидцы", если было "ясно"? Уж не "вред государству" ли это?  



 (330x248, 11Kb)



   А между тем уже к 1991 году освоено около 50 % средств,     запланированных на строительство, и сохранение темпов могло бы   обеспечить уже в 1996 году наличие в стране ускорительно -   накопительного комплекса протонов на энергию 3 ТэВ, что   минимум   на 10 следующих лет обеспечивало мировой приоритет в   самых   перспективных исследованиях. Но... история, увы, не знает     сослагательного наклонения. Финансово-экономический "обвал   науки"  начала 90-х годов - это ведь не вина ученых-физиков, а их   большая беда, которую они вынужденно разделяют со всей страной.   И на данный момент ситуация такова, что вынужденно   приостановлены работы  по созданию   ускорителя, а все силы   сосредоточены на сохранении уже   построенного тоннеля и некоторых   других сооружений. 



 На снимке: В тонеле УНК выдержан "метро-размер"



    Далее - "отвлекали средства от действительно необходимых работ". Во-первых, с высоты прошедших лет оно, конечно, виднее. А во-вторых, надо бы указать ради точности, что же за работы имеются ввиду. Поскольку в интервью об этом ни слова, можно напомнить, что уже в 80-х годах была разработана ГНТП ФВЭ (государственная научно-техническая программа по физике высоких энергий), включающая в себя не только наш ускоритель, но и сооружение здесь же, в Протвино, линейного электрон-позитронного коллайдера (ВЛЭПП) с использованием той же мощной базы стройиндустрии, которая позволила построить У-70 и существенно продвинуться по строительной части УНК.  Увы, и работы по ВЛЭПП были приостановлены на стадии проектно-конструкторской разработки в начале 90-х по той же причине.



А может быть, имеются ввиду работы по международному проекту термоядерной демонстрационной установки ИТЭР, российскую долю которой долгие годы (да что там годы? –десятилетия!) курирует уважаемый Евгений Павлович? А средств, кстати сказать, требуется для этого поистине "бесконечного" проекта  не меньше, а много больше, чем, например,  требовалось для ввода в строй первой ступени нашего ускорителя (на 80 % готовой) на энергию 600 ГэВ...



     Возвращаясь к теме тоннеля, хотелось бы заметить, что ему угрожают отнюдь не мифические "лягушки" - грозит вполне реальное затопление грунтовыми водами, а это может быть определенная экологическая "мина замедленного действия" под весь юго-запад Серпуховского региона с неясными последствиями.



    Следовательно,  нужен серьезный разговор о дальнейшем будущем  тоннеля.



    Представляется, что осуществленное в Протвино  строительство по проекту УНК всё же  дало России уникальное инженерно-техническое сооружение - 21-километровый кольцевой тоннель сечением 5 метров со средней глубиной залегания около 50 метров. Второй в мире по длине кольца (в ЦЕРНе несколько больше), наш тоннель в полтора раза шире в поперечном сечении, он долго не будет иметь равных в способности реализовать различные ускорительные (либо иные) проекты мирового научного значения в начале 21-го века и далее. Работать над этими проектами смогут те самые нынешние младшие научные сотрудники, о которых в интервью проявлено беспокойство.



unkmagns (355x245, 33 Kb)



    Да и наш почти готовый ускоритель, который мы не можем доукомплектовать и опустить в тоннель из-за нехватки средств, представляет определённый  интерес не только для отечественной, но и для мировой науки. Сейчас имеется  более 20 предложений экспериментов с участием ученых Западной Европы, США и Японии. Так, физики США (Мичиганский университет) не только готовят совместный российско-американский эксперимент НЕПТУН, но и уже реально вложили несколько миллионов долларов в создание уникальной жидководородной мишени поляризованных протонов.



На снимке: Дипольные магниты для 1-й ступени УНК "на сохранении"



Говоря о физиках из многих лабораторий России и стран СНГ, напомним, что наш действующий с 1967 года ускоритель У-70, до сих пор оставаясь крупнейшим в России и на всём евразийском пространстве, востребован в той мере, которую позволяют отпущенные финансовые ресурсы, и "очередь" желающих провести исследования не убывает. А запуск нового ускорителя повысил бы энергию ускоренного пучка протонов на порядок - в той же мере, очевидно, повысился бы и интерес к работе именно здесь. Впрочем, возможны и иные научно привлекательные варианты использования тоннеля – были бы средства… 



    Очень хотелось бы, чтобы российские ученые, от младших научных сотрудников до признанных корифеев, работали на отечественной научной базе. Чтобы эта мечта осуществилась, надо не пытаться искать виноватых там, где их нет, не "перетаскивать одеяло", а вести совместный поиск трудных решений в трудных условиях.



    А что касается вынесенного в заголовок вопроса уважаемого академика, то можно ответить, что сила науки - в точности... 



Первоначальный текст был направлен в "РГ" как ответ (реакции не было),  затем подготовлен для отраслевой  газеты, где и был опубликован (см. "Атом-пресса" № 7, февраль 1999 г.


Метки:   Комментарии (0)КомментироватьВ цитатник или сообщество

Следующие 30  »

<е.велихов - Самое интересное в блогах

Страницы: [1] 2 3 ..
.. 10

LiveInternet.Ru Ссылки: на главную|почта|знакомства|одноклассники|фото|открытки|тесты|чат
О проекте: помощь|контакты|разместить рекламу|версия для pda