, 31 2008 . 23:58
+
SerenityJames
, - ]:->
, , , , .
, - .
-------------------------------------------------------------------------------------------------------------------------------
, , .
.
Problem: Find sin(x), if cos(x) = 4/5 and 0 < x < /2.
Solution: It is known that sin(x)^2 + cos(x)^2 = 1 or (4/5)^2 + sin(x)^2 = 1.
sin(x)^2 = 1 - 16/25 = 9/25, |sin(x)| = sin(x) = sqrt(9/25) = 3/5.
Answer: 3/5.
____________________________________
: sin(x), cos(x) = 4/5 0 < x < /2.
: , sin(x)^2 + cos(x)^2 = 1 or (4/5)^2 + sin(x)^2 = 1.
sin(x)^2 = 1 - 16/25 = 9/25, |sin(x)| = sin(x) = sqrt(9/25) = 3/5.
: 3/5.
--------------------------------------------------------------------------------------------------------
, :
Problem ()
Find ... (...)
Solution ()
It is known that ... ( ) , ...
Answer ()
---------------------------------------------------------------------------------------
, , , , :
sin(x), cos(x) - , sinx cosx ( )
4/5 - , . ,
0 < x < /2 - , /2 " "
sin(x)^2 - ^2 . " "
|sin(x)| - -
sqrt - -
---------------------------------------------------------------------------
, .
.
, )
:
: