Произошедшее поразило всех: ТАЙНА энергии ГРИБОВ, которые мы едим ТАЙНА энергии ГРИБОВ, которы...
Краткая инструкция по составлению режиссерских сценариев |
Как бы хорошо ни был написан литературный (постановочный) сценарий, снимать по нему без специальной адаптации довольно сложно. Во-первых, потому что он построен по хронологическому принципу согласно сюжету, и некоторые сцены, происходящие в одном месте, могу быть разбросаны далеко друг от друга. Во-вторых, в литературном сценарии не учтены крупности планов и нет покадровокой разбивки сцен, а смотреть одновременно в раскадровку и в сценарий довольно неудобно. В-третьих, в литературном сценарии реквизит разбросан по страницам, и есть вероятность чего-то недосчитаться, не учтены также и монтажные особенности (звук, графика, спецэффекты и т.д.). Поэтому режиссеры, операторы, скрипт-супервайзеры, звукорежиссеры и художники во время съемок больше полагаются на режиссерский сценарий – схематическую адаптацию литературной версии.
Режиссерский сценарий не привносит никаких новшеств относительно постановочного – это разработка подробного плана съемок, на основе которого творческая группа реализует авторский замысел сценариста на экране. Независимо от хронологической последовательности эпизодов в фильме, режиссер в своем сценарии объединяет схожие сцены, которые должны сниматься на одном объекте, натуре, в одно время суток, что позволяет заранее просчитать логистику и необходимые передвижения съемочной группы.
Метки: script |
music tribe (продолжение) |
В западной музыке есть 12 различных тонов. Выбор этой величины в немалой степени произволен. То есть у двенадцати есть, конечно, несколько приятных математических свойств, но все ничего выдающегося в нем нет. Вы могли бы запросто придумать свой набор нот с 11-ю тонами, или 17-ю, или сотней или пятью. Что и делают некоторые другие музыкальные формы, используемые в других частях мира.
Коэффициент умножения между последовательными тонами в западной музыке, таким образом, равен корню 12-й степени из 2, или ¹²√2 ≈ 1.0594631. Взяв, например, частоту 440 Гц и последовательно умножая ее на этот коэффициент, мы получим 12 тонов, частота которых не превышает величину в 880 Гц.
На деле же никто не хочет работать с этими числами. Когда эта система придумывалась, никто про них просто не знал. Вместо этого на практике музыкальная терминология опирается на соотношения.
Метки: music |
music tribe |
идет гроза, темно как вечером, замечательная атмосфера. пожалуй с этого и начну ..:)
Музыка — разновидность звука. Звук — это волна давления.
Представьте, что происходит, когда вы бьете в барабан. Когда вы бьете по нему, его мембрана, сделанная из упругого материала, деформируется сначала вовнутрь, а затем отскакивает наружу, потом снова вовнутрь и так далее до тех пор, пока не потеряет всю энергию. Если в этот момент вы будете наблюдать за точкой в центре мембраны, ее движение будет очень похоже на то, что получается, когда вы держите игрушечную шагающую пружинку (слинки) за один конец и отпускаете другой.
Когда мембрана отскакивает наружу, она выталкивает воздух перед собой. Этот воздух толкает еще больший объем воздуха у себя на пути, который повторяет то же действие с окружающими уже его воздушными молекулами, создавая трехмерную рябь, исходящую от барабана. Тем временем мембрана уже отскакивает вовнутрь, оставляя после себя вакуум, стремительно заполняемый окружающим воздухом, оставляющим за собой другой вакуум и так далее… В результаты молекулы воздуха вокруг барабана двигаются вперед назад по отношению к своему начальному положению, прямо как сама мембрана или пружина слинки.
В конечном счете волна давления достигает ваших барабанных перепонок, которые вибрируют таким же образом и вы интерпретируете эти колебания как музыку. Ну или как шум, в зависимости от ваших вкусов.
С радостью привела бы иллюстрацию этого процесса, но дело в том, что она выглядела бы как рябь на поверхности пруда, волны которой при этом двигаются вверх. Звуковые колебания происходят в трех измерениях, движение направляется вперед / от источника колебания, и это, на мой взгляд, очень важное отличие.
Так что вместо иллюстраций давайте лучше перейдем сразу к графикам и для начала взглянем на синусоидальную волну.
Неважно, что такое синусоидальная волна. Просто ее очень легко изображать на графике и поэтому удобно приводить в качестве типичного примера волны.
На графиках вроде этого время начинается с нуля и возрастает слева направо, а волна показывает насколько сильно воздух (или ваши перепонки, или другая среда) сдвинулась со своего начального положения. Полную тишину на этом графике можно отобразить в виде прямой линии, проходящей слева направо на уровне нуля.
Все звуки, которые вы когда-либо слышали, можно представить в виде такого же графика. Вот так вот просто. Если вы «откроете» песню в Audacity и приблизите график, вы увидите волну. Выглядеть она, скорее всего, будет несколько сложнее, но она по-прежнему будет волной.
Любую волну можно определить с помощью нескольких характеристик: частоты, амплитуды и формы. Всякий звук, который вы слышите, обладает некоторой формой, которая позволяет нам безошибочно различать звучание гитары и скрипки. Музыканты называют это свойство тембром.
Синусоидальная волна звучит примерно вот так:
Амплитуда — это расстояние между наивысшей и наинизшей точками волны. Ну или некоторые спецы определяют ее как половину этой величины, то есть расстояние между наивысшей точкой и нулем. Для нашего уха амплитуда — это громкость того или иного звука, что вполне логично, поскольку в терминах физики, амплитуда — наибольший численный показатель отклонения среды от начального состояния. Если стукнуть мембрану легонько, она отреагирует коротким колебанием, а звук будет тихим. Если же начать играть в полную силу, то колебания мембраны станут хорошо заметны, а барабан зазвучит гораздо громче.
Частота позволяет понять, насколько часто в буквальном смысле повторяется волна. Если волны на графике очень худые, тогда она повторяется чаще, то есть ее частота выше. Если гребни волны широкие, значит волна повторяется реже и ее частота ниже. Музыканты называют частоту высотой звука. Немузыканты, наверное, назовут ее просто нотой или тоном, что вызовет насмешки со стороны музыкантов, но что с них взять.
Частота измеряется в Гц (герцах). Это такая забавная замена словосочетанию «в секунду». Если на то, чтобы добраться из одной точки волны на графике в ту же самую точку следующий волны требуется полсекунды, то это 2 Гц, потому что за секунду по графику «пробегают» 2 волны. На приведенной выше записи вы слышали звук частотой 440 Гц. (Частота волны на графике, конечно же не такая. На нем изображена совершенно неизменная синусоидальная волна, сгенерированная wxMaxima, поэтому ее частота составляет 1/τ = 1/(2π)).
Важное свойство человеческого уха, определяющее многие другие музыкальные закономерности, заключается в том, что если вы увеличите или уменьшите частоту звука вдвое, то получившийся звук покажется вам в каком-то смысле «таким же». Очевидно, что вы будете воспринимать его как более высокий или более низкий, и тем не менее вы «почувствуете», что он очень похож на изначальный звук. Я конечно могу только догадываться о физической природе этого явления, но это правило так или иначе очень условно.
Сравните эти три синусоидальные волны, если хотите. Первая — это та же самая, изображенная ранее. Частота второй в 1.5 раза больше чем у первой, а у третьей частота увеличена вдвое. Первая и третья гораздо более близки друг другу по звучанию, нежели вторая по отношению к ним обоим.
Волна частотой 440 Hz
Волна частотой 660 Hz
Волна частотой 880 Hz
Ноты и октавы
Сложность с музыкальной теорией заключается в том, что только половина правил в ней имеет под собой логическое обоснование, но другая половина при этом весьма произвольна, и увидеть различие между этими двумя категориями с первого взгляда невозможно.
Давайте начнем со следующего факта о человеческих органах слуха: если прослушать сначала звук одной высоты, а потому удвоить его высоту (т. е. частоту), то второй вариант прозвучит для нас «так же» как и первый, но объяснить, откуда берется эта схожесть мы не можем. Таким образом, для любого начального тона f вы можете создать бесконечное количество других тонов, звучащих «также»: ½f, 2f, ¼f, 4f и так далее. Конечно, в диапазон восприятия человеческого уха попадет лишь некоторое, конечное их количество. Все эти тоны вместе взятые обладают неким общим качеством, поэтому давайте будем называть их группу нотой.
Нотой также можно назвать и отдельный тон. Введение такого понятия, как «класс тонов» устранило бы эту двусмысленность, но я все же буду и дальше применять термин «нота» как собирательный.
Если мы принимаем, что частота 440 Гц воспроизводит ноту под названием A, тогда 880 Гц, 220 Гц, 1760 Гц, 110 Гц и другие также будут соответствовать ноте под названием A. Отсюда следует важный вывод: диапазона частот 440 Гц и 880 Гц достаточно, чтобы определить все ноты, которые мы только можем придумать. Частоту любой другой высоты можно увеличивать или уменьшать вдвое до тех пор, пока полученное значение не попадет в этот диапазон и не станет соответствовать своей ноте в нем.
Подобный диапазон называется октавой. Почему он называется так мы увидим немного позже. Всякая нота может существовать только в пределах данной октавы, как бы вы ее ни называли. Например, самый нижний тон f — та же нота, что и 2f, который, таким образом, относится уже к следующей октаве.
И это хорошие новости! Это значит, что мы можем выбрать некую группу тонов, частоты которых лежат в пределах малого диапазона — любого малого диапазона размером f — 2f и увеличивать или уменьшать их частоты вдвое до тех пор, пока не получим стандартный набор нот, охватывающий весь диапазон человеческого слуха.
В связи с этим возникает другой вопрос: по какому правилу мы будем выбирать эти тоны? Вы можете предложить простой, на первый взгляд, подход. Например, взять все высоты от f до 2f с шагом 0.1f и получить последовательность f, 1.1f, 1.2f, 1.3f, 1.4f и так далее. Что может быть проще и понятнее равномерного шага?
Отличный план! К сожалению, на практике он работает не очень хорошо. Попробуйте сами и убедитесь, что разница в звучании между f и 1.1f — совсем не та же, что разница между 1.9f и 2f.
Человеческое ухо различает высоту звука на основании определенных пропорций (коэффициентов), что, в частности, объясняет и эффект удвоения или деления частоты пополам. Разница между f и 1.1f составляет 10%, тогда как 1.9f и 2f отличаются друг от друга всего лишь на ~5%.
То есть, выходит, нам нужен набор тонов, обладающих одинаковыми соотношениями звучания между друг другом, а не одинаковыми разницей в численном измерении. Если нам нужны n тонов, тогда нам требуется найти такое число, умножив которое n раз мы может пройти весь диапазон от f до 2f.
f × x × x × x × … × x = 2f
fxⁿ = 2f xⁿ = 2 x = ⁿ√2
Надо же. Нам нужен n-й корень из двух. Немного странно и необычно, потому что результат, так или иначе, окажется иррациональным для любого n > 1.
продолжение следует
Метки: music |
Страницы: [1] Календарь |