Если прямая, падающая на две прямые, образует внутренние и по одну сторону углы меньшие двух прямых, то продолженные неограниченно эти две прямые встретятся с той стороны, где углы меньше двух прямых - это пятый постулат евклидовой геометрии, согласно которому параллельные прямые не пересекаются. Однако в 1829 г. Н.И.Лобачевский опубликовал статью "О началах геометрии". В этой статье, так же как и в письмо молодого венгерского математика Я.Больяи, переданном К.Гауссу, утверждалось, что возможно построение непротиворечивой геометрии, не содержащей известный пятый постулат евклидовой геометрии. Этот постулат, гласящий, что через точку, лежащую вне данной прямой, можно провести одну и только одну прямую, параллельную данной, казался наиболее уязвимым (или наименее очевидным) априорным требованием евклидовой геометрии. Однако попытки вывести его из других аксиом оканчивались
всегда неудачей. Поэтому был выбран другой путь - построение геометрии, основанной на всех аксиомах и постулатах Евклида, но в которой был заменен пятый постулат о параллельных: через одну точку можно провести либо бесконечное множество прямых, параллельных данной, либо ни одной.
Для иллюстрации идеи неевклидовости пространства полезно привести достаточно простой пример. Пусть пространством является поверхность обычной двумерной сферы. Отвлечемся прежде всего от привычного образа сферы, вложенной в видимое трехмерное пространство, полагая сферу самостоятельным автономным объектом. Будем полагать, что "прямые" в таком сферическом пространстве - кратчайшие расстояния между двумя заданными точками на сфере, т.е. дуги большого круга. Положим, что бесконечным прямым в евклидовом пространстве соответствуют окружности на сфере.
Здесь правильно будет говорить именно о соответствии, а не о тождестве, поскольку окружность на сфере обладает лишь одним свойством евклидовой прямой - отсутствием границ, но не обладает другим ее свойством - бесконечной протяженностью. Окружность на сфере безгранична, но конечна. Нетрудно,
далее, убедиться, что через любую точку сферы, не находящуюся на данном большом круге, нельзя провести большой круг, не пересекающий данный, т.е. "параллельную". Иначе говоря, все "прямые" пересекаются. Отметим также и другую важную особенность сферической геометрии. Если вырезать из сферы достаточно малую площадку, то геометрия будет имитироваться геометрией Евклида.
Короче - параллельные прямые не пересекаются только в евклидовой геометри =)
LI 3.9.25