|
|
— , , , :
√8 √50. 45 .
.
: http://znatok.wordpress.com/2010/07/11/usech-piramida/
: |
|
|
sin²x + cos²(2·x) + sin²(3·x) = ³/₂
.
½(1 − cos(2·x)) + ½(1 + cos(4·x)) +
+ ½(1 − cos(6·x)) = ³/₂
2 :
os(6·x) + cos(2·x) − cos(4·x) = 0
:
2·cos(4·x)·cos(2·x) − cos(4·x) = 0
:
cos(4·x)·(cos(2·x) − ½) = 0
, :
cos(4·x) = 0
4·x = π/₂ + π·k = (2·k + 1)·π/₂
x = (2·k + 1)·π/₈; k ∈ ℤ
cos(2·x) = ½
2·x = ±π/₃ + 2·π·n = (6·n ± 1)·π/₃
x = (6·n ± 1)·π/₆; n ∈ ℤ
.
: x = {(2·k + 1)·π/₈} ∪ {(6·n ± 1)·π/₆}; k, n ∈ ℤ
22266913.32831289.1267818117.101560d87f9a7a1556047f7619544801
: |
|
|
{x − y = π/3
{cos x + cos y = ³/₂
{(x + y)/2 = α
{(x − y)/2 = π/6
{x = α + π/6
{y = α − π/6
:
cos(α + π/6) + cos(α − π/6) = ³/₂
:
cos(α + β) + cos(α + β) = 2·cos α·cos β
cos(α + π/6) + cos(α − π/6) = 2·cos(π/6)·cos α =
= 2·√3/2·cos α = √3·cos α = ³/₂
cos α = √3/2
α = ±π/6 + 2·π·n
{x = α + π/6 = π/6 ± π/6 + 2·π·n
{y = α − π/6 = π/6 ± −π/6 + 2·π·n
{x = (1 ± 1)·π/6 + 2·π·n
{y = −(1 ± 1)·π/6 + 2·π·n
{x₁ = 2·π·n {y₁ = −π/3 + 2·π·n |
{x₂ = π/3 + 2·π·n {y₂ = 2·π·n |
n ∈ ℤ
.
2427176 (), (067)7384545
: |
|
|
:
sin²(ˣ/₂) < ¾
.
|sin(ˣ/₂)| < ½·√3
½·√3 < sin(ˣ/₂) < ½·√3
−π/3 + π·n < ˣ/₂ < π/3 + π·n
−2·π/3 + 2·π·n < x < 2·π/3 + 2·π·n; n ∈ ℤ
.
(1 − cos x)/2 < ¾
1 − cos x < ³/₂
cos x > 1 − ³/₂
cos x > ⁻½
−2·π/3 + 2·π·n < x < 2·π/3 + 2·π·n; n ∈ ℤ
.
2427176 (), (067)7384545
: |
: | [1] |