-

  • (42)
  • (13)
  • (7)
  • (6)
  • (5)
  • (1)

 -

!
: 108 : 0
: 1 : 0

 -

 - -

.


1

 -

   all4student

 - e-mail

 

 -

 LiveInternet.ru:
: 07.01.2010
:
:
: 82

:

(0)

, 11 2010 . 20:04 +


:  
(0)

, 19 2010 . 20:23 +

sin²x + cos²(2·x) + sin²(3·x) = ³/₂

.

½(1 − cos(2·x)) + ½(1 + cos(4·x)) +

+ ½(1 − cos(6·x)) = ³/₂

2 :

os(6·x) + cos(2·x) − cos(4·x) = 0

:

2·cos(4·x)·cos(2·x) − cos(4·x) = 0

:

cos(4·x)·(cos(2·x) − ½) = 0

,  :

  1. cos(4·x) = 0

    4·x = π/₂ + π·k = (2·k + 1)·π/₂

    x = (2·k + 1)·π/₈;   k ∈ ℤ

  2. cos(2·x) = ½

    2·x = ±π/₃ + 2·π·n = (6·n ± 1)·π/₃

    x = (6·n ± 1)·π/₆;   n ∈ ℤ

.

:   x = {(2·k + 1)·π/₈} ∪ {(6·n ± 1)·π/₆};   k, n ∈ ℤ

22266913.32831289.1267818117.101560d87f9a7a1556047f7619544801


:  
(0)

, 29 2010 . 18:17 +

{x − y = π/3 

{cos x + cos y = ³/₂

{(x + y)/2 = α

{(x − y)/2 = π/6

{x = α + π/6

{y = α − π/6

:

cos(α + π/6) + cos(α − π/6) = ³/₂

:

cos(α + β) + cos(α + β) = 2·cos α·cos β

cos(α + π/6) + cos(α − π/6) = 2·cos(π/6)·cos α =

= 2·√3/2·cos α = √3·cos α = ³/₂

cos α = √3/2

α = ±π/6 + 2·π·n

{x = α + π/6 = π/6 ± π/6 + 2·π·n

{y = α − π/6 = π/6 ± −π/6 + 2·π·n

 

{x = (1 ± 1)·π/6 + 2·π·n

{y = −(1 ± 1)·π/6 + 2·π·n

 

{x₁ = 2·π·n

{y₁ = −π/3 + 2·π·n

{x₂ = π/3 + 2·π·n

{y₂ = 2·π·n

n ∈ ℤ


  .

2427176 (), (067)7384545



:  
(0)

, 26 2010 . 23:33 +

:

sin²(ˣ/₂) < ¾

.

|sin(ˣ/₂)| < ½·√3

½·√3 < sin(ˣ/₂) < ½·√3

−π/3 + π·n < ˣ/₂ < π/3 + π·n

−2·π/3 + 2·π·n < x < 2·π/3 + 2·π·n;   n ∈ ℤ

 

.

(1 − cos x)/2 < ¾

1 − cos x < ³/₂

cos x > 1 − ³/₂

cos x > ⁻½

−2·π/3 + 2·π·n < x < 2·π/3 + 2·π·n;   n ∈ ℤ


.

2427176 (), (067)7384545



:  

 : [1]