. |
|
.
a, b, c — , .
: (1 + a)·(1 + b)·(1 + c) ≥ 8·(1 − a)·(1 − b)·(1 − c)
(, ) :
1 + a = 2 − (b + c) = (1 − b) + (1 − c)
:
½ ((1 − b) + (1 − c)) ≥ √((1 − b)·(1 − c)), (1 − b) + (1 − c) = 1 + a ≥ 2·√((1 − b)·(1 − c))
, :
{1 + a ≥ 2·√((1 − b)·(1 − c))
{1 + b ≥ 2·√((1 − a)·(1 − c))
{1 + c ≥ 2·√((1 − b)·(1 − b))
, :
(1 + a)·(1 + b)·(1 + c) ≥ 8·√(((1 − a)·(1 − b)·(1 − c))²)
(1 + a)·(1 + b)·(1 + c) ≥ 8·(1 − a)·(1 − b)·(1 − c)
.
: |
|
|
— , , , :
√8 √50. 45 .
.
: http://znatok.wordpress.com/2010/07/11/usech-piramida/
: |
|
|
sin²x + cos²(2·x) + sin²(3·x) = ³/₂
.
½(1 − cos(2·x)) + ½(1 + cos(4·x)) +
+ ½(1 − cos(6·x)) = ³/₂
2 :
os(6·x) + cos(2·x) − cos(4·x) = 0
:
2·cos(4·x)·cos(2·x) − cos(4·x) = 0
:
cos(4·x)·(cos(2·x) − ½) = 0
, :
cos(4·x) = 0
4·x = π/₂ + π·k = (2·k + 1)·π/₂
x = (2·k + 1)·π/₈; k ∈ ℤ
cos(2·x) = ½
2·x = ±π/₃ + 2·π·n = (6·n ± 1)·π/₃
x = (6·n ± 1)·π/₆; n ∈ ℤ
.
: x = {(2·k + 1)·π/₈} ∪ {(6·n ± 1)·π/₆}; k, n ∈ ℤ
22266913.32831289.1267818117.101560d87f9a7a1556047f7619544801
: |
|
|
{x − y = π/3
{cos x + cos y = ³/₂
{(x + y)/2 = α
{(x − y)/2 = π/6
{x = α + π/6
{y = α − π/6
:
cos(α + π/6) + cos(α − π/6) = ³/₂
:
cos(α + β) + cos(α + β) = 2·cos α·cos β
cos(α + π/6) + cos(α − π/6) = 2·cos(π/6)·cos α =
= 2·√3/2·cos α = √3·cos α = ³/₂
cos α = √3/2
α = ±π/6 + 2·π·n
{x = α + π/6 = π/6 ± π/6 + 2·π·n
{y = α − π/6 = π/6 ± −π/6 + 2·π·n
{x = (1 ± 1)·π/6 + 2·π·n
{y = −(1 ± 1)·π/6 + 2·π·n
{x₁ = 2·π·n {y₁ = −π/3 + 2·π·n |
{x₂ = π/3 + 2·π·n {y₂ = 2·π·n |
n ∈ ℤ
.
2427176 (), (067)7384545
: |
|
|
:
sin²(ˣ/₂) < ¾
.
|sin(ˣ/₂)| < ½·√3
½·√3 < sin(ˣ/₂) < ½·√3
−π/3 + π·n < ˣ/₂ < π/3 + π·n
−2·π/3 + 2·π·n < x < 2·π/3 + 2·π·n; n ∈ ℤ
.
(1 − cos x)/2 < ¾
1 − cos x < ³/₂
cos x > 1 − ³/₂
cos x > ⁻½
−2·π/3 + 2·π·n < x < 2·π/3 + 2·π·n; n ∈ ℤ
.
2427176 (), (067)7384545
: |
|
|
, .
y″ − 4·y′ + 4·y = e³ˣ y(0) = 0; y′(0) = 1
: y = y₀ + y₁,
y₀ — ,
y₁ — .
k² − 4·k + 4 = (k − 2)² = 0 k₁ = k₂ = 2
y₀ = (C₁·x + C₂)·e²ˣ.
C₁, C₂ — .
.
y₁ = A·e³ˣ. y₁′ = 3·A·e³ˣ = 3·y₁, y₁″ = 3²·y₁ = 9·y₁.
y₁″ − 4·y₁′ + 4·y₁ = (9 − 3·3 + 4)·y₁ = y₁ = A·e³ˣ, A = 1.
y₁ = e³ˣ, y = y₀ + y₁ = (C₁·x + C₂)·e²ˣ + e³ˣ
C₁, C₂ .
x = 0 y = C₂ + 1 = 0, C₂ = −1.
y = (C₁·x − 1)·e²ˣ + e³ˣ
: y′ = (2·C₁·x + C₁ − 2)·e²ˣ + 3·e³ˣ
x = 0 y′ = C₁ − 2 + 3 = C₁ + 1 = 1, C₁ = 0
:
y = e³ˣ − e²ˣ
: |
|
|
lim | (1 − sin(3·x))1/(1 − cos(2·x)) |
x→0 |
x→0 1∞.
́ .
cos(2·x) = 1 − 2·sin²x
1 − cos(2·x) = 2·sin²x
:
:
lim | (1 − sin(3·x))1/sin(3·x) = | lim | (1 − sin t)1/t = e⁻¹ = 1/e |
x→0 | t=sin(3·x)→0 |
.
lim | sin(3·x)/(2·sin²x) = | lim | 3·x²·sin(3·x)/(2·x²·sin²x) = ³/₂· | lim | sin(3·x)/(3·x)× |
x→0 | x→0 | x→0 |
×lim | (x/sin x)²· | lim | ¹/ₓ = ³/₂·1·1· | lim | ¹/ₓ | = ³/₂·lim | ¹/ₓ |
x→0 | x→0 | x→0 | x→0 |
:
A = | lim | e−3/(2·x) = | lim | q−1/x |
x→0 | x→0 |
q = e3/2 > 1.
x = 0 . .
|
|
: |
: | [1] |