-

  • (42)
  • (13)
  • (7)
  • (6)
  • (5)
  • (1)

 -

!
: 108 : 0
: 1 : 0

 -

 - -

.


1

 -

   all4student

 - e-mail

 

 -

 LiveInternet.ru:
: 07.01.2010
:
:
: 82

:

(0)

, 13 2012 . 03:51 +

x·y' + y = y²

, . :

...


:  
(0)

.

, 21 2010 . 20:39 +

.

a, b, c — , .

:   (1 + a)·(1 + b)·(1 + c) ≥ 8·(1 − a)·(1 − b)·(1 − c)

(, ) :

1 + a = 2 − (b + c) = (1 − b) + (1 − c)

:

½ ((1 − b) + (1 − c)) ≥ √((1 − b)·(1 − c)),   (1 − b) + (1 − c) = 1 + a ≥ 2·√((1 − b)·(1 − c))

:

{1 + a ≥ 2·√((1 − b)·(1 − c))
{1 + b ≥ 2·√((1 − a)·(1 − c))
{1 + c ≥ 2·√((1 − b)·(1 − b))

, :

(1 + a)·(1 + b)·(1 + c) ≥ 8·√(((1 − a)·(1 − b)·(1 − c))²)

  (1 + a)·(1 + b)·(1 + c) ≥ 8·(1 − a)·(1 − b)·(1 − c)

.



:  
(0)

, 11 2010 . 20:04 +


:  
(0)

, 19 2010 . 20:23 +

sin²x + cos²(2·x) + sin²(3·x) = ³/₂

.

½(1 − cos(2·x)) + ½(1 + cos(4·x)) +

+ ½(1 − cos(6·x)) = ³/₂

2 :

os(6·x) + cos(2·x) − cos(4·x) = 0

:

2·cos(4·x)·cos(2·x) − cos(4·x) = 0

:

cos(4·x)·(cos(2·x) − ½) = 0

,  :

  1. cos(4·x) = 0

    4·x = π/₂ + π·k = (2·k + 1)·π/₂

    x = (2·k + 1)·π/₈;   k ∈ ℤ

  2. cos(2·x) = ½

    2·x = ±π/₃ + 2·π·n = (6·n ± 1)·π/₃

    x = (6·n ± 1)·π/₆;   n ∈ ℤ

.

:   x = {(2·k + 1)·π/₈} ∪ {(6·n ± 1)·π/₆};   k, n ∈ ℤ

22266913.32831289.1267818117.101560d87f9a7a1556047f7619544801


:  
(0)

, 29 2010 . 18:17 +

{x − y = π/3 

{cos x + cos y = ³/₂

{(x + y)/2 = α

{(x − y)/2 = π/6

{x = α + π/6

{y = α − π/6

:

cos(α + π/6) + cos(α − π/6) = ³/₂

:

cos(α + β) + cos(α + β) = 2·cos α·cos β

cos(α + π/6) + cos(α − π/6) = 2·cos(π/6)·cos α =

= 2·√3/2·cos α = √3·cos α = ³/₂

cos α = √3/2

α = ±π/6 + 2·π·n

{x = α + π/6 = π/6 ± π/6 + 2·π·n

{y = α − π/6 = π/6 ± −π/6 + 2·π·n

 

{x = (1 ± 1)·π/6 + 2·π·n

{y = −(1 ± 1)·π/6 + 2·π·n

 

{x₁ = 2·π·n

{y₁ = −π/3 + 2·π·n

{x₂ = π/3 + 2·π·n

{y₂ = 2·π·n

n ∈ ℤ


  .

2427176 (), (067)7384545



:  
(0)

, 26 2010 . 23:33 +

:

sin²(ˣ/₂) < ¾

.

|sin(ˣ/₂)| < ½·√3

½·√3 < sin(ˣ/₂) < ½·√3

−π/3 + π·n < ˣ/₂ < π/3 + π·n

−2·π/3 + 2·π·n < x < 2·π/3 + 2·π·n;   n ∈ ℤ

 

.

(1 − cos x)/2 < ¾

1 − cos x < ³/₂

cos x > 1 − ³/₂

cos x > ⁻½

−2·π/3 + 2·π·n < x < 2·π/3 + 2·π·n;   n ∈ ℤ


.

2427176 (), (067)7384545



:  
(0)

, 10 2010 . 04:22 +

,  .

 

y″ − 4·y′ + 4·y = e³ˣ   y(0) = 0;   y′(0) = 1


:   y = y₀ + y₁,

y₀ — ,

y₁ — .

  k² − 4·k + 4 = (k − 2)² = 0     k₁ = k₂ = 2

  y₀ = (C₁·x + C₂)·e²ˣ.

C₁, C₂ — .

.

y₁ = A·e³ˣ. y₁′ = 3·A·e³ˣ = 3·y₁,   y₁″ = 3²·y₁ = 9·y₁.

y₁″ − 4·y₁′ + 4·y₁ = (9 − 3·3 + 4)·y₁ = y₁ = A·e³ˣ,   A = 1.

  y₁ = e³ˣ,   y = y₀ + y₁ = (C₁·x + C₂)·e²ˣ + e³ˣ

C₁, C₂ .

  x = 0     y = C₂ + 1 = 0,   C₂ = −1.

  y = (C₁·x − 1)·e²ˣ + e³ˣ

:   y′ = (2·C₁·x + C₁ − 2)·e²ˣ + 3·e³ˣ

  x = 0     y′ = C₁ − 2 + 3 = C₁ + 1 = 1,   C₁ = 0

 

:

y = e³ˣ − e²ˣ


— . http://integral-ua.narod.ru/


:  
(0)

, 07 2010 . 07:22 +

lim (1 − sin(3·x))1/(1 − cos(2·x))
 x→0  

  x→0 1.

́ .

cos(2·x) = 1 − 2·sin²x
1 − cos(2·x) = 2·sin²x

:

  :

lim (1 − sin(3·x))1/sin(3·x) =   lim (1 − sin t)1/t = e⁻¹ = 1/e
x→0   t=sin(3·x)→0  

  .

lim sin(3·x)/(2·sin²x) = lim 3·x²·sin(3·x)/(2·x²·sin²x) = ³/₂· lim sin(3·x)/(3·x)×
x→0    x→0    x→0  

 

×lim (x/sin x)²· lim ¹/ₓ = ³/₂·1·1· lim ¹/ₓ = ³/₂·lim ¹/ₓ
x→0    x→0   x→0    x→0  

:

 

A =  lim e−3/(2·x) =  lim q−1/x
  x→0   x→0  

  q = e3/2 > 1.

x = 0 . .

 

lim q−1/x = q+∞ = +∞
x→0₋  
lim q−1/x = q−∞ = 0
x→0₊  


:  

 : [1]