-Всегда под рукой

 -Я - фотограф

Предел функции. Раскрытие неопределённости


1 фотографий

 -Поиск по дневнику

Поиск сообщений в all4student

 -Подписка по e-mail

 

 -Статистика

Статистика LiveInternet.ru: показано количество хитов и посетителей
Создан: 07.01.2010
Записей:
Комментариев:
Написано: 82


Тригонометрическое уравнение

Пятница, 19 Февраля 2010 г. 20:23 + в цитатник

Решим тригонометрическое уравнение

sin²x + cos²(2·x) + sin²(3·x) = ³/₂

Воспользуемся сперва формулами понижения степени.

½(1 − cos(2·x)) + ½(1 + cos(4·x)) +

+ ½(1 − cos(6·x)) = ³/₂

Домножим теперь обе части уравнения на 2 и приведём подобные слагаемые:

сos(6·x) + cos(2·x) − cos(4·x) = 0

Для первых двух слагаемых применим формулу суммы косинусов:

2·cos(4·x)·cos(2·x) − cos(4·x) = 0

Разложим левую часть уравнения на множители:

cos(4·x)·(cos(2·x) − ½) = 0

Приравнивая каждый из множителей к нулю, получим и решим два уравнения:

  1. cos(4·x) = 0

    4·x = π/₂ + π·k = (2·k + 1)·π/₂

    x = (2·k + 1)·π/₈;   k ∈ ℤ

  2. cos(2·x) = ½

    2·x = ±π/₃ + 2·π·n = (6·n ± 1)·π/₃

    x = (6·n ± 1)·π/₆;   n ∈ ℤ

Объединим найденные решения.

Ответ:   x = {(2·k + 1)·π/₈} ∪ {(6·n ± 1)·π/₆};   k, n ∈ ℤ

22266913.32831289.1267818117.101560d87f9a7a1556047f7619544801
Рубрики:  Математика
Метки:  

 

Добавить комментарий:
Текст комментария: смайлики

Проверка орфографии: (найти ошибки)

Прикрепить картинку:

 Переводить URL в ссылку
 Подписаться на комментарии
 Подписать картинку