
123. Сорок учеников выстроены в прямоугольник по 10 человек в каждой шеренге и по 4 в каждой колонне. В каждой шеренге выбран самый низенький ученик, а затем из 4 отобранных выбран самый высокий. Им оказался ученик Андреев. Затем в каждой колонне был выбран самый высокий ученик и среди 10 отобранных выбран самый низенький. Им оказался ученик Петров. Кто выше, Андреев или Петров?
Решение. Пусть в той же колонне, что Андреев и в той же шеренге, что Петров, стоит Сергеев. Тогда он выше Андреева и ниже Петрова, то есть Петров выше Андреева.
Ответ: Петров.
124. В 1 стакане 20% молока, а остальное – вода, в другом таком же стакане 80% молока, а остальное – вода. Сколько процентов молока будет в кастрюле, если в нее выльют оба эти стакана?
Решение. Включение в условие стакана дает учителю возможность считать стакан равным, например, 0,2 л или не оперировать определенным объемом (в зависимости от силы учащихся). Существенно здесь лишь то, что молоко из первого стакана будет составлять не 20%, а 10% всего объема, а молоко из второго стакана будет составлять не 80%, а 40% всего объема. Значит, всего молока в кастрюле окажется 10% + 40%.
Ответ: 50%.
125. В клетках квадрата 3х3 были записаны натуральные числа так, что суммы чисел в каждой строке, в каждом столбце и на каждой диагонали были одинаковыми. Некоторые числа стерли. Остались 24 в нижнем правом углу, 15 в центре и 9 правее 15. Восстановите стертые числа.
Решение. Обозначим через а число в правом верхнем углу:
Так как суммы цифр во всех столбцах, строках и диагоналях одинаковы, то каждая из них равна а + 33. Значит, в левом нижнем углу стоит число 18:
Поставим число b левее числа 15:
Так как сумма в левом столбце равна сумме во второй строке, то есть равна 24 + b, то в верхнем левом углу стоит число 6:
У нас заполнилась диагональ, по которой можно найти сумму чисел в каждой строке, в каждом столбце и каждой диагонали. Эта сумма равна 6 + 15 + 24 = 45. Теперь можно заполнить и все остальные клетки.
Ответ:
126. Выписаны подряд все числа от 1 до 60, без пробелов между цифрами: 123456789101112…585960. Надо вычеркнуть 100 цифр, чтобы оставшееся число оказалось наименьшим.
Решение. Всего выписано 111 цифр (9 – на однозначные числа и еще 102 на 51 двузначное число). Значит, после вычеркивания 100 цифр останется 11-значное число. Чтобы оно было самым маленьким, нужно поставить в нем на первое место 1, а на последующие – нули. Однако нулей в нашей записи всего 6. Если мы выпишем их все, то за последним нулем цифр уже не останется. Попробуем оставить нули только от чисел 10, 20, 30, 40 и 50. Тогда у нас получится такое число: 10000051525354555657585960. От него можно оставить после 100000 еще 5 цифр. Так как нуль поставить нельзя, поставим самую маленькую из возможных – 1, вычеркнув первую пятерку после пяти нулей: 1000001525354555657585960. Теперь можно вычеркнуть еще две пятерки и все цифры между 4 и последним нулем, оставляя следующие за ними цифры: 10000012340.
Ответ: 10000012340.
127. Фразу "Страшнее кошки зверя нет" зашифруй кодом Виженера с помощью шифра "дева".
Решение.
Страшнее
кошки
зверя
нет
56315631
56315
63156
315
Ответ: Цшубэузё пфыло несд узу.
128. Сколько разломов надо сделать, чтобы разломать эту шоколадку на отдельные квадратики?
Решение. Вначале можно попробовать конкретные пути. В каждом случае будет получаться одно и то же: 23 разлома. И наконец, надо объяснить, что каждый разлом добавляет новый кусок. После первого разлома будет два куска, после второго три и так далее. Так как из одного куска нужно получить 24, то разломов будет 23.
Ответ: 23.
132. Из какой точки земного шара надо выйти, чтобы, пройдя 100 км на юг, затем 100 км на восток, а потом еще 100 км на север, снова оказаться в точке отправления?
Ответ: Во-первых, это Северный полюс. Но, кроме того, это бесконечное множество точек, лежащих невдалеке от Южного полюса и отвечающих следующему условию: если пройти из такой точки на юг, то окажешься на параллели, длина которой равна 100 : n км, где n – любое натуральное число.
133. 3 м ткани стоят 200 р. Сколько стоят 4,5 м этой ткани?
Решение. Задача не решается сведением к единице, так как, отвечая на вопрос, сколько стоит один метр, придется делить 200 на 3. Так что лучше решать задачу составлением пропорции. Полезно для этого записать кратко задачу так:
3 м – 200 р.
4,5 м – х р.
Теперь пропорция рождается автоматически.
Если все же учитель не хочет составлять пропорцию, он может предложить такое решение:
1) Сколько стоят 9 м? 200 х 3 = 600 (р.).
2) Сколько стоят 4,5 м? 600 : 2 = 300 (р.).
Возможно и иное решение, так как 4,5 м = 3 м + 1,5 м, а 1,5 м стоят 200 : 2 = 100 (р.).
Ответ: 300 р.
136. Сколько нулей на конце произведения всех натуральных чисел от 1 до 100?
Решение. Нулей столько, сколько имеется пар простых множителей 2 и 5. Двоек очень много – они присутствуют во всех четных числах. А пятерок меньше – они имеются только в числах, делящихся на 5. Таких чисел двадцать: 5, 10, 15, 20, 25, …, 95, 100. Но в четырех из них по две пятерки: 25 = 5 х 5, 50 = 2 х 5 х 5, 75 = 3 х 5 х 5, 100 = 2 х 2 х 5 х 5. Так что всего пятерок в произведении 20 + 4 = 24.
Ответ: 24 нуля.