-Рубрики

 -неизвестно

 -Я - фотограф

Сад камней на Мангышлаке

Генералитет
2 фотографий

 -Поиск по дневнику

Поиск сообщений в Алитет

 -Подписка по e-mail

 

 -Сообщества

Участник сообществ (Всего в списке: 3) Тоска_по_Интеллекту Live_Memory ИСКУССТВОбезГРАНИЦ
Читатель сообществ (Всего в списке: 2) Death_Note_Gallery О_Самом_Интересном

 -Статистика

Статистика LiveInternet.ru: показано количество хитов и посетителей
Создан: 14.02.2010
Записей: 5407
Комментариев: 414
Написано: 7396


Простота учения Нильса Бора

Понедельник, 20 Июля 2015 г. 10:57 + в цитатник

https://mail.yandex.ru/?uid=42391355&login=aagrikola#message/2440000006589970238

Научное творчество Нильса Бора имеет два строго очерченных аспекта--собственные теоретические открытия в области квантовой физики и руководство и обоснование работ целой научной школы по созданию основ квантовой механики. Боровский атом водорода: В марте 1913 года Бор послал предварительный вариант статьи Резерфорду, а в апреле съездил на несколько дней в Манчестер для обсуждения своей теории.

Итогом проведённой работы стали три части революционной статьи «О строении атомов и молекул»[16], опубликованные в журнале «Philosophical Magazine» в июле, октябре и декабре 1913 года и содержащие квантовую теорию водородоподобного атома. В теории Бора можно выделить два основных компонента: общие утверждения (постулаты) о поведении атомных систем, сохраняющие своё значение и всесторонне проверенные, и конкретная модель строения атома, представляющая в наши дни лишь исторический интерес. Постулаты Бора содержат предположения о существовании стационарных состояний и об излучательных переходах между ними в соответствии с представлениями Планка о квантовании энергии вещества. Модельная теория атома Бора исходит из предположения о возможности описания движения электронов в атоме, находящемся в стационарном состоянии, на основе классической физики, на которое накладываются дополнительные квантовые условия (например, квантование углового момента электрона). Теория Бора сразу же позволила обосновать испускание и поглощение излучения в сериальных спектрах водорода, а также объяснить (с поправкой на приведённую массу электрона) наблюдавшиеся ранее Чарлзом Пикерингом и Альфредом Фаулером водородоподобные спектры с полуцелыми квантовыми числами как принадлежащие ионизированному гелию. Блестящим успехом теории Бора стало теоретическое получение значения постоянной Ридберга. Работа Бора сразу привлекла внимание физиков и стимулировала бурное развитие квантовых представлений.

Его современники по достоинству оценили важный шаг, который сделал датский учёный. Так, в 1936 году Резерфорд писал: Я считаю первоначальную квантовую теорию спектров, выдвинутую Бором, одной из самых революционных из всех когда-либо созданных в науке; и я не знаю другой теории, которая имела бы больший успех. В 1949 году Альберт Эйнштейн так вспоминал о своих впечатлениях от знакомства с теорией Бора: Все мои попытки приспособить теоретические основы физики к этим результатам [то есть следствиям закона Планка для излучения чёрного тела] потерпели полную неудачу. Это было так, точно из-под ног ушла земля и нигде не было видно твёрдой почвы, на которой можно было бы строить. Мне всегда казалось чудом, что этой колеблющейся и полной противоречий основы оказалось достаточным, чтобы позволить Бору — человеку с гениальной интуицией и тонким чутьём — найти главные законы спектральных линий и электронных оболочек атомов, включая их значение для химии. Это мне кажется чудом и теперь. Это наивысшая музыкальность в области мысли. 

В 1918 году в статье «О квантовой теории линейчатых спектров» Бор сформулировал количественно так называемый принцип соответствия, связывающий квантовую теорию с классической физикой. Впервые идея соответствия возникла ещё в 1913 году, когда Бор использовал мысль о том, что переходы между стационарными орбитами с большими квантовыми числами должны давать излучение с частотой, совпадающей с частотой обращения электрона[25]. Начиная с 1918 года, принцип соответствия стал в руках Бора мощным средством для получения новых результатов: он позволил, следуя представлениям о коэффициентах Эйнштейна, определить вероятности переходов и, следовательно, интенсивности спектральных линий; получить правила отбора (в частности, для гармонического осциллятора); дать интерпретацию числу и поляризации компонент штарковского и зеемановского расщеплений.
 
Впоследствии Бор дал чёткую формулировку принципу соответствия: …"принцип соответствия", согласно которому наличие переходов между стационарными состояниями, сопровождающихся излучением, связано с гармоническими компонентами колебания в движении атома, определяющими в классической теории свойства излучения, испускаемого вследствие движения частицы. Таким образом, по этому принципу, предполагается, что всякий процесс перехода между двумя стационарными состояниями связан с соответствующей гармонической компонентой так, что вероятность наличия перехода зависит от амплитуды колебания, поляризация же излучения обусловлена более детальными свойствами колебания так же, как интенсивность и поляризация излучения в системе волн, испускаемых атомом по классической теории вследствие наличия указанных компонент колебания, определяется амплитудой и другими свойствами последних. Принцип соответствия сыграл огромную роль и при построении последовательной квантовой механики. Именно из него исходил в 1925 году Вернер Гейзенберг при построении своей матричной механики. В общефилософском смысле этот принцип, связывающий новые знания с достижениями прошлого, является одним из основных методологических принципов современной науки. В 1921—1923 годах в ряде работ Бору впервые удалось дать на основе своей модели атома, спектроскопических данных и общих соображений о свойствах элементов объяснение периодической системы Менделеева, представив схему заполнения электронных орбит (оболочек, согласно современной терминологии). Правильность интерпретации периодической таблицы была подтверждена открытием в 1922 году нового элемента гафния Дирком Костером и Георгом Хевеши, работавшими в то время в Копенгагене. Как и предсказывал Бор, этот элемент оказался близок по своим свойствам к цирконию, а не к редкоземельным элементам, как думали ранее.В 1922 году Бору была присуждена Нобелевская премия по физике «за заслуги в изучении строения атома».
Однако было очевидно, что теория Бора в своей основе содержала внутреннее противоречие, поскольку она механически объединяла классические понятия и законы с квантовыми условиями. Кроме того, она была неполной, недостаточно универсальной, так как не могла быть использована для количественного объяснения всего многообразия явлений атомного мира. Например, Бору совместно с его ассистентом Хендриком Крамерсом так и не удалось решить задачу о движении электронов в атоме гелия (простейшей двухэлектронной системе), которой они занимались с 1916 года. Бор отчётливо понимал ограниченность существующих подходов (так называемой «старой квантовой теории») и необходимость построения теории, основанной на совершенно новых принципах: …весь подход к проблеме в целом носил ещё в высшей степени полуэмпирический характер, и вскоре стало совершенно ясно, что для исчерпывающего описания физических и химических свойств элементов необходим новый радикальный отход от классической механики, чтобы соединить квантовые постулаты в логически непротиворечивую схему. Становление квантовой механики.
 
Новой теорией стала квантовая механика, которая была создана в 1925—1927 годах в работах Вернера Гейзенберга, Эрвина Шрёдингера, Макса Борна, Поля Дирака,Вольфганга Паули. Вместе с тем, основные идеи квантовой механики, несмотря на её формальные успехи, в первые годы оставались во многом неясными. Для полного понимания физических основ квантовой механики было необходимо связать её с опытом, выявить смысл используемых в ней понятий (ибо использование классической терминологии уже не было правомерным), то есть дать интерпретацию её формализма.Именно над этими вопросами физической интерпретации квантовой механики размышлял в это время Бор. Итогом стала концепция дополнительности, Именно корпускулярно-волновой дуализм был положен Бором в основу интерпретации теории.
Идея дополнительности, развитая в начале 1927 года во время отпуска в Норвегии, отражает логическое соотношение между двумя способами описания или наборами представлений, которые, хотя и исключают друг друга, оба необходимы для исчерпывающего описания положения дел. Сущность принципа неопределённости состоит в том, что не может возникнуть такой физической ситуации, в которой оба дополнительные аспекта явления проявились бы одновременно и одинаково отчётливо. Иными словами, в микромире нет состояний, в которых объект имел бы одновременно точные динамические характеристики, принадлежащие двум определённым классам, взаимно исключающим друг друга, что находит выражение в соотношении неопределённостей Гейзенберга. Данные измерений объектов микромира, полученные при помощи различных экспериментальных установок, в условиях, когда взаимодействие между измерительным прибором и объектом составляет неотъемлемую часть процесса измерений, находятся в своеобразном дополнительном отношении друг к другу. Следует отметить, что на формирование идей Бора, как он сам признавал, повлияли философско-психологические изыскания Сёрена Кьеркегора, Харальда Гёффдинга и Уильяма Джемса. Можно пояснить принцип неопределённости на примере электронного микроскопа.Предположим,вы через него наблюдаете электрон.Это значит,что фотон отразился от электрона и попал на сетчатку вашего глаза.Но,столкнувшись с электроном,фотон сдвинул его (передал ему свой импульс).Так как скорость фотона конечна,то когда он дойдёт до вашего глаза-момент.когда вы наблюдаете электрон-сам электрон уже находится в других координатах.То есть,нельзя точно определить одновременно координату микрочастицы и время нахождения её в этой координате.

 
Принцип дополнительности лёг в основу так называемой копенгагенской интерпретации квантовой механики и анализа процесса измерения характеристик микрообъектов. Согласно этой интерпретации, заимствованные из классической физики динамические характеристики микрочастицы (её координата, импульс, энергия и др.) вовсе не присущи частице самой по себе. Смысл и определённое значение той или иной характеристики электрона, например, его импульса, раскрываются во взаимосвязи с классическими объектами, для которых эти величины имеют определённый смысл и все одновременно могут иметь определённое значение (такой классический объект условно называется измерительным прибором). Роль принципа дополнительности оказалась столь существенной, что Паули даже предлагал назвать квантовую механику «теорией дополнительности» по аналогии с теорией относительности. Через месяц после конгресса в Комо, на пятом Сольвеевском конгрессе в Брюсселе, начались знаменитые дискуссии Бора и Эйнштейна об интерпретации квантовой механики. Спор продолжился в 1930 году на шестом конгрессе, а затем возобновился с новой силой в 1935 году после появления известной работы Эйнштейна, Подольского и Розена о полноте квантовой механики. Дискуссии не прекращались до самой смерти Эйнштейна, порой принимая ожесточённый характер. Впрочем, участники никогда не переставали относиться друг к другу с огромным уважением, что нашло отражение в словах Эйнштейна, написанных в 1949 году: Я вижу, что я был … довольно резок, но ведь … ссорятся по-настоящему только братья или близкие друзья. Хотя Бор так и не сумел убедить Эйнштейна в своей правоте, эти обсуждения и решения многочисленных парадоксов позволили Бору чрезвычайно улучшить ясность своих мыслей и формулировок, углубить понимание квантовой механики: Урок, который мы из этого извлекли, решительно продвинул нас по пути никогда не кончающейся борьбы за гармонию между содержанием и формой; урок этот показал нам ещё раз, что никакое содержание нельзя уловить без привлечения соответствующей формы, и что всякая форма, как бы ни была она полезна в прошлом, может оказаться слишком узкой для того, чтобы охватить новые результаты. Нильс Бор безусловно является первопроходцем и создателем основ квантовой механики,как физик.Но глубже всего его гений раскрылся в разработке и отточенности в дискуссиях с Эйнштейном эвристически-философского принципа дополнительности. 
 
Бор,конечно,добился значительных успехов в ядерной физике.Свидетельствами этого являются попытка Гейзенберга привлечь его к созданию атомной бомбы для Германии и само участие в Манхэттенском проекте.Но это несравнимо с его решающими достижениями в квантовой механике. Научная школа Бора. Бор создал крупную международную школу физиков и многое сделал для развития сотрудничества между физиками всего мира. С начала 1920-х годов Копенгаген стал «центром притяжения» для наиболее активных физиков: большинство создателей квантовой механики (Гейзенберг, Дирак, Шрёдингер и другие) в то или иное время там работали, их идеи выкристаллизовывались в продолжительных изнурительных беседах с Бором. Большое значение для распространения идей Бора имели его визиты с лекциями в различные страны. Так, большую роль в истории науки сыграли семь лекций, прочитанных Бором в июне 1922 года в Гёттингенском университете (так называемый «Боровский фестиваль»). Именно тогда он познакомился с молодыми физиками Вольфгангом Паули и Вернером Гейзенбергом, учениками Зоммерфельда. Свои впечатления от первой беседы с Бором во время прогулки Гейзенберг выразил следующим образом: Эта прогулка оказала сильнейшее влияние на моё последующее научное развитие, или, пожалуй, можно сказать лучше, что моё собственно научное развитие только и началось с этой прогулки. В дальнейшем связь группы Бора с гёттингенской группой, руководимой Максом Борном, не прерывалась и дала множество выдающихся научных результатов. Естественно, весьма сильны были связи Бора с кембриджской группой, которую возглавлял Резерфорд: в Копенгагене в разное время работали Чарльз Дарвин, Поль Дирак, Ральф Фаулер, Дуглас Хартри, Невилл Мотт и другие. В своём институте Бор принимал также советских учёных, многие из которых работали там подолгу. Он неоднократно приезжал в СССР, последний раз в 1961 году. К школе Нильса Бора можно отнести таких учёных, как Хендрик Крамерс, Оскар Клейн, Лев Ландау, Виктор Вайскопф, Леон Розенфельд, Джон Уилер, Феликс Блох, Оге Бор, Хендрик Казимир, Ёсио Нисина, Кристиан Мёллер, Абрахам Пайс и многих других. Характер научной школы Бора и его взаимоотношений с учениками могут быть прояснены следующим эпизодом. Когда Ландау во время визита Бора в Москву в мае 1961 года спросил у своего наставника: «Каким секретом вы обладали, который позволил вам в такой степени концентрировать вокруг себя творческую теоретическую молодёжь?», тот ответил: Никакого особого секрета не было, разве только то, что мы не боялись показаться глупыми перед молодёжью".

Нильс и Маргарет Бор в гостях у Ландау
Нильс и Маргарет Бор в гостях у Ландау (500x316, 34Kb)

 

Серия сообщений "Портреты":
Часть 1 - Портрет живого
Часть 2 - Маркес. 13 фраз о любви
...
Часть 13 - я хотел бы остаться с тобой, брат...
Часть 14 - Матвиенко грозится снять маску. А доллар уже за 57 р.....
Часть 15 - Простота учения Нильса Бора
Часть 16 - Хорошо сказано
Часть 17 - Тряхнет, пожалуй, так, что камня на камне не оставит
Часть 18 - День рождения пророка Мухаммеда
Часть 19 - Чисто Казаков в молодости. А на самом деле Дега - портрет Тиссо
Часть 20 - Афоризмы Конфуция



Процитировано 1 раз

 

Добавить комментарий:
Текст комментария: смайлики

Проверка орфографии: (найти ошибки)

Прикрепить картинку:

 Переводить URL в ссылку
 Подписаться на комментарии
 Подписать картинку