-Подписка по e-mail

 

 -Поиск по дневнику

Поиск сообщений в naomijer

 -Статистика

Статистика LiveInternet.ru: показано количество хитов и посетителей
Создан: 14.09.2008
Записей: 815
Комментариев: 39
Написано: 1078

Комментарии (1)

АНАТОМИЧКА, Зрительный анализатор человека , ч.35

Дневник

Суббота, 21 Марта 2009 г. 23:30 + в цитатник
также являются самостоятельными ветвями глазной артерии, однако роль их в питании тканей глазницы незначительная.
Из системы наружной сонной артерии в питании вспомогательных органов глаза принимают участие некоторые ветви лицевой и верхнечелюстной артерий.
Зрительный анализатор человека , продолжение

Мышцы глазного яблока (musculus bulbi)

Мышечный аппарат каждого глаза состоит из трех пар антагонистически действующих глазодвигательных мышц: верхней и нижней прямых (mm. rectus oculi superior et inferior), внутренней и наружной прямых (mm. rectus oculi medialis et lataralis), верхней и нижней косых (mm. obliquus superior et inferior) (см. рис. 18).
 (500x300, 45Kb)

Все мышцы, за исключением нижней косой, начинаются, как и мышца, поднимающая верхнее веко, от сухожильного кольца, расположенного вокруг зрительного канала глазницы. Затем четыре прямые мышцы направляются, постепенно дивергируя, кпереди и после прободения теноновой капсулы вплетаются своими сухожилиями в склеру. Линии их прикрепления находятся на разном расстоянии от лимба: внутренней прямой — 5,5— 5,75 мм, нижней — 6—6,5 мм, наружной — 6,9—7 мм, верхней — 7,7—8 мм.

Верхняя косая мышца от зрительного отверстия направляется к кост-посухожильному блоку, расположенному у верхневнутреннего угла глазницы и, перекинувшись через пего, идет кзади и кнаружи в виде компактного сухожилия; прикрепляется к склере в верхненаружном квадранте глазного яблока на расстоянии 16 мм от лимба.

Нижняя косая мышца начинается от нижней костной стенки глазницы несколько латеральнее места входа в носослезный канал, идет кзади и кнаружи между нижней стенкой глазницы и нижней прямой мышцей; прикрепляется к склере на расстоянии 16 мм от лимба (нижненаружный квадрант глазного яблока).

Внутренняя, верхняя и нижняя прямые мышцы, а также нижняя косая мышца иннервируются веточками глазодвигательного нерва (n. oculomotorius), наружная прямая — отводящего (n. abducens), верхняя косая — блокового (n. trochlearis).

При сокращении той или иной мышцы глаз совершает движение вокруг оси, которая перпендикулярна ее плоскости. Последняя проходит вдоль мышечных волокон и пересекает точку вращения глаза. Это означает, что у большинства глазодвигательных мышц (за исключением наружной и внутренней прямых мышц) оси вращения имеют тот или иной угол наклона по отношению к исходным координантным осям. Вследствие этого при сокращении таких мышц глазное яблоко совершает сложное движение. Так, например, верхняя прямая мышца при среднем положении глаза поднимает его кверху, ротирует кнутри и несколько поворачивает к носу. Понятно, что амплитуда вертикальных движений глаза будет увеличиваться по мере уменьшения угла расхождения между сагиттальной и мышечной плоскостями, т. е. при повороте глаза кнаружи.

Все движения глазных яблок подразделяют на сочетанные (ассоциированные, конъюгированные) и конвергентные (фиксация разноудаленных объектов за счет конвергенции). Сочетанные движения — это те, которые направлены в одну сторону: вверх, вправо, влево и т. д. Эти движения совершаются мышцами-синергистами. Так, например, при взгляде вправо в правом глазу сокращается наружная, а в левом — внутренняя прямые мышцы. Конвергентные движения реализуются посредством действия внутренних прямых мышц каждого глаза. Разновидностью их являются фузионные движения. Будучи очень мелкими, они осуществляют особо точную фиксационную установку глаз, благодаря чему создаются условия для беспрепятственного слияния в корковом отделе анализатора двух сетчаточных изображений в один цельный образ.

Слезный аппарат (apparatus lacrimalis)

Продукция слезной жидкости осуществляется слезной железой (glandula lacrimalis) и мелкими добавочными железами Краузе и Вольфринга. Последние обеспечивают суточную потребность глаза в увлажняющей его жидкости. Главная же слезная железа активно функционирует лишь в условиях эмоциональных всплесков (положительных и отрицательных), а также в ответ на раздражение чувствительных нервных окончаний в слизистой оболочке глаза или носа (рефлекторное слезоотделение).

Слезная железа лежит под верхненаружным краем орбиты в углублении лобной кости (fossa glandulae lacrimalis). Сухожилие мышцы, поднимающей верхнее веко, делит ее на большую глазничную и меньшую вековую части. Выводные протоки глазничной доли железы (в количестве 3—5) проходят между дольками вековой железы, принимая попутно ряд ее многочисленых мелких протоков, и открываются в своде конъюнктивы на расстоянии нескольких миллиметров от верхнего края хряща. Кроме того, вековая часть железы имеет и самостоятельные протоки, количество которых от 3 до 9. Поскольку она лежит сразу же под верхним сводом конъюнктивы, при вывороте верхнего века ее дольчатые контуры обычно хорошо видны.

Слезная железа иннервируется секреторными волокнами лицевого нерва (n. facialis), которые, проделав сложный путь, достигают ее в составе слезного нерва (n. lacrimalis), являющегося ветвью глазного нерва (n. ophthalmicus).

У детей слезная железа начинает функционировать к концу 2-го месяца жизни, поэтому до истечения этого срока при плаче глаза у них остаются сухими.

Слеза (lacrima) — прозрачная жидкость, со слабощелочной реакцией (рН 7,0—7,4) и сложным биохимическим составом, большую часть которой (98—99 %) составляет вода. В норме вырабатывается небольшое количество слезы (от 0,5—0,6 до 1 мл в сутки). В се состав входит также секрет, выделяемый бокаловидными клетками конъюнктивы (Бехера), криптами Генле, железами Манна (все они продуцируют муцин), а также мейбомиевыми, и Цейса (продуцируют липиды). В связи с этим прекорнеальная пленка слезной жидкости состоит из трех слоев: тонкого муцинового (контактирует с роговичным эпителием), водянистого (по объему основного) и наружного ли-пидного. Эта пленка выполняет ряд важных функций:

 защитную (удаление пылевых частиц, предупреждение повреждений мелкими инородными телами, бактерицидное действие);
 оптическую (сглаживает микроскопические неровности поверхности роговицы, обеспечивает ее влажность, гладкость и зеркальность, преломляет световые лучи);
 трофическую (участие вдыхании и питании роговицы).

Продуцируемая упомянутыми выше железами слезная жидкость скатывается по поверхности глазного яблока сверху вниз в капиллярную щель между задним гребнем нижнего века и глазным яблоком, где и образуется слезный ручеек (rivus lacrimalis), впадающий в слезное озеро (lаcus lacrimalis). Продвижению слезной жидкости способствуют мигательные движения век. При смыкании они не только идут навстречу Друг другу, но и смещаются кнутри (особенно нижнее веко) на 1—2 мм, в результате чего глазная щель укорачивается.

 (400x330, 65Kb)

Слезоотводящие пути состоят из слезных канальцев, слезного мешка и носослезпого протока (см. Рис. 8.1).Слезные канальцы (canaliculi lacrimales) начинаются слезными точками (punctum lacrimale), которые находятся на вершине слезных сосочков обоих век и погружены в слезное озеро. Диаметр точек при открытых веках 0,25—0,5 мм. Они ведут в вертикальную часть канальцев (длина 1,5—2 мм). Затем ход их меняется почти на горизонтальный. Далее они, постепенно сближаясь, открываются в слезный меток позади внутренней спайки век каждый в отдельности или слившись предварительно в общее устье. Длина этой части канальцев 7—9 мм, диаметр 0,6 мм. Стенки канальцев покрыты многослойным плоским эпителием, под которым находится слой эластических мышечных волокон.

Слезный мешок (saccus lacrimalis) расположен в костной, вытянутой по вертикали ямке между передним и задним коленами внутренней спайки век и охвачен мышечной петлей (m. Horneri). Купол его выступает над этой связкой и находится пресептально, т. с. вне полости глазницы. Изнутри мешок покрыт многослойным плоским эпителием, иод которым находится слой аденоидной, а затем плотной волокнистой ткани.

Слезный мешок открывается в носослезпый проток (ductus nasolacrimalis), который проходит сначала в костном канале (длина около 12 мм). В нижнем же отделе он имеет костную стенку только с латеральной стороны, в остальных отделах граничит со слизистой оболочкой носа и окружен густым венозным сплетением. Проток открывается под нижней носовой раковиной на расстоянии 3—3,5 см от наружного отверстия носа. Общая длина его 15 мм, диаметр 2—3 мм. У новорожденных выходное отверстие протока нередко закрыто слизистой пробкой или топкой пленкой, вследствие чего создаются условия для развития гнойного или серозно-гнойного дакриоцистита. Стенка протока имеет такое же строение, как и стенка слезного мешка. У выходного отверстия протока слизистая оболочка образует складку, которая играет роль запирающего клапана.

В целом можно принять, что слезоотводящий путь состоит из небольших мягких трубочек различной длины и формы с изменяющимся диаметром, которые стыкуются под определенными углами. Они соединяют конъюнктивальную полость с юсовой, куда и происходит постоячный отток слезной жидкости. Он обеспечивается за счет мигательных движений век, сифонного эффекта с капиллярным притяжением жидкости, заполняющей слезные пути, перистальтического изменения диаметра канальцев, присасывающей способности слезного мешка (вследствие чередования в нем положительного и отрицательного давления при мигании) и отрицательного давления, создающегося в полости носа при аспирационном движении воздуха.

Кровоснабжение глаза и его вспомогательных органов

Артериальная система органа зрения

Основную роль в питании органа зрения играет глазная артерия (а. ophthalmica) — одна из основных ветвей внутренней сонной артерии. Через зрительный канал глазная артерия проникает в полость глазницы и, находясь сначала под зрительным нервом, поднимается затем с наружной стороны вверх и пересекает его, образуя дугу. От нее и отходят все основные веточки глазной артерии (рис. 3.8).
 (500x350, 71Kb)

Центральная артерия сетчатки (а. centralis retinae) — сосуд небольшого диаметра, идущий от начальной части дуги глазной артерии. На расстоянии 7— 12 мм от заднего полюса глаза через твердую оболочку она входит снизу в глубь зрительного нерва и направляется в сторону его диска одиночным стволом, отдавая в обратном направлении тонкую горизонтальную веточку (рис. 3.9). Нередко, однако, наблюдаются случаи, когда глазничная часть нерва получает питание от небольшой сосудистой веточки, которую часто называют центральной артерией зрительного нерва (a. centralis nervi optici). Топография ее не постоянна: в одних случаях она отходит в различных вариантах от центральной артерии сетчатки, в других — непосредственно от глазной артерии В центре ствола нерва эга артерия после Т-образного деления занимает горизонтальное положение и посылает множественные капилляры в сторону сосудистой сети мягкой мозговой оболочки. Внугриканальцевая и околока-нальцевая части зрительного нерва питаются за счет n.recurrens a.ophthalmica, r.recurrens a. hypophysialis sup.ant. и rr.intracanalicularesa ophthalmica.

 (500x260, 61Kb)

Центральная артерия сетчатки выходит из стволовой части зрительного нерва, дихотомически делится вплоть до артериол 3-го порядка (рис. 3.10), формируя сосудистую сеть, которая питает мозговой слой сетчатки и внутриглазную часть диска зрительного нерва. Не столь уж редко на глазном дне при офтальмоскопии можно увидеть дополнительный источник питания макулярной зоны сетчатки в виде a.cilioretinalis. Однако она отходит уже не от глазной артерии, а от задней короткой ресничной или артериального круга Цинна— Галлера. Ее роль очень велика при нарушениях кровообращения в системе центральной артерии сетчатки.

3 (500x330, 65Kb)

Задние короткие ресничные артерии (aa.ciliares posteriores breves) — ветви (длиной 6—12 мм) глазной артерии, которые подходят к склере заднего полюса глаза и, перфорируя ее вокруг зрительного нерва, образуют интрасклеральный артериальный круг Цинна—Галлера. Они формируют также собственно сосудистую оболочку — хорио-идею (рис. 3.11). Последняя посредством своей капиллярной пластинки питает нейроэпителиаль-ный слой сетчатки (от слоя палочек и колбочек до наружного плексиформного включительно).

 (400x400, 72Kb)

Отдельные ветви задних коротких ресничных артерий проникают в ресничное тело, но существенной роли в его питании не играют. В целом же система задних коротких ресничных артерий не анастомозирует с какими-либо другими сосудистыми сплетениями глаза Именно по этой причине воспалительные процессы, развивающиеся в собственно сосудистой оболочке, не сопровождаются гиперемией глазного яблока. Две задние длинные ресничные артерии (aa.ciliares posteriores iongae) отходят от ствола глазной артерии и располагаются дистальнее задних коротких ресничных арте-Рий. Перфорируют склеру на уровне боковых сторон зрительного нерва и, войдя в супрахориоидаль-ное пространство на 3 и 9 часах, достигают ресничного тела, которое в основном и питают. Анастомозируют с передними ресничными артериями, которые являются ветвями мышечных артерий (аа. musculares) (рис. 3.12).

Около корня радужки задние длинные ресничные артерии дихотомически делятся. Образовавшиеся ветви соединяются друг с другом и образуют большой артериальный круг радужки (circulus arteriosus iridis major). От него в радиальном направлении отходят новые веточки, формирующие в свою очередь уже на границе между зрачковым и ресничным поясами радужки малый артериальный круг (circulus arteriosus iridis minor).
На склеру задние длинные ресничные артерии проецируются в зоне прохождения внутренней и наружной прямых мышц глаза. Эти ориентиры следует иметь в виду при планировании операций.

Мышечные артерии (aa.musculares) обычно представлены двумя более или менее крупными стволами — верхним (для мышцы, поднимающей верхнее веко, верхней прямой и верхней косой мышц) и нижним (для остальных глазодвигательных мышц). При этом артерии, питающие четыре прямые мышцы глаза, за пределами сухожильного прикрепления отдают к склере веточки, именуемые передними ресничными артериями (aa.ciliares anteriores), — по две от каждой мышечной ветви, за исключением наружной прямой мышцы, которая имеет одну веточку.
На расстоянии 3—4 мм от лимба передние ресничные артерии начинают делиться на мелкие веточки. Часть их направляется к лимбу роговицы и путем новых разветвлений образует двухслойную краевую петлистую сеть — поверхностную (plexus episcleralis) и глубокую (plexus scleralis). Другие веточки передних ресничных артерий перфорируют стенку глаза и вблизи корня радужки вместе с задними длинными ресничными артериями образуют большой артериальный круг радужки.

Медиальные артерии век (aa.palpebrales mediales) в виде двух ветвей (верхней и нижней) подходят к коже век в области их внутренней связки. Затем, располагаясь горизонтально, они широко анастомозируют с латеральными артериями век (aa.palpebrales laterales), отходящими от слезной артерии (a.lacrimalis). В результате образуются артериальные дуги век — верхнего (arcus palpebralis superior) и нижнего (arcus palpebralis inferior) (рис. 3.13). В их формировании участвуют также анастомозы от ряда других артерий: надглазничная (a.supraorbitalis) — ветвь глазной (a.ophthalmica), подглазничная (a.infraorbitalis) — ветвь верхнечелюстной (a.maxillaris), угловая (a.angularis) — ветвь лицевой (a.facialis), поверхностной височной (a.temporalis supeificialis) — ветвь наружной сонной (a.carotisexterna).

Обе дуги находятся в мышечном слое век на расстоянии 3 мм от ресничного края. Однако на верхнем веке часто имеется не одна, а две артериальные дуги. Вторая из них (периферическая) располагается нал верхним краем хряща и соединяется с первой вертикальными анастомозами. Кроме того, от этих же дуг к задней поверхности хряща и конъюнктиве отходят мелкие перфорирующие артерии (aa.perforantes). Вместе с веточками медиальных и латеральных артерий век они образуют задние конъюнктивальные артерии, участвующие в кровоснабжении слизистой оболочки век и, частично, глазного яблока.

Питание конъюнктивы глазного яблока осуществляют передние и задние конъюнктивальные артерии. Первые отходят от передних ресничных артерий и направляются в сторону конъюнктивалыного свода, а вторые, будучи ветвями слезной и надглазничной артерий, идут им навстречу. Обе эти кровеносные системы связаны множеством анастомозов.

Слезная артерия (a.lacrimalis) отходит от начальной части дуги глазной артерии и располагается между наружной и верхней прямыми мышцами, отдавая им и слезной железе множественные веточки. Кроме того, она, как это указано выше, своими ветвями (aa.palpcbrales laterales) принимает участие в образовании артериальных дуг век.

Надглазничная артерия (a. supraorbitalis), будучи достаточно крупным стволом глазной артерии, проходит в верхней части глазницы к одноименной вырезке в лобной кости. Здесь она вместе с латеральной ветвью надглазничного нерва (r.lateralis n.supiaorbitalis) выходит под кожу, питая мышцы и мягкие ткани верхнего века.

Надблоковая артерия (a. supratrochlearis) выходит из глазницы около блока вместе с одноименным первом, перфорировав предварительно глазничную перегородку (septum orbitale).

Решетчатые артерии (aa.ethmoidales) также являются самостоятельными ветвями глазной артерии, однако роль их в питании тканей глазницы незначительная.
Из системы наружной сонной артерии в питании вспомогательных органов глаза принимают участие некоторые ветви лицевой и верхнечелюстной артерий.

Подглазничная артерия (a. infraorbitalis), являясь ветвью верхнечелюстной, проникает в глазницу через нижнюю глазничную щель. Располагаясь поднадкостнично, проходит по одноименному каналу на нижней стенке подглазничной борозды и выходит на лицевую поверхность верхнечелюстной кости. Участвует в питании тканей нижнего века. Мелкие веточки, отходящие от основного артериального ствола, участвуют в кровоснабжении нижней прямой и нижней косой мышц, слезной железы и слезного мешка.

Лицевая артерия (a.facialis) — достаточно крупный сосуд, располагающийся в медиальной части входа в глазницу. В верхнем отделе отдает большую ветвь — угловую артерию (a.angularis).

Венозная система органа зрения

Отток венозной крови непосредственно из глазного яблока происходит в основном по внутренней (ретинальной) и наружной (ресничной) сосудистым системам глаза. Первая представлена центральной веной сетчатки, вторая — четырьмя ворти-козными венами (см. рис. 3.10 и 3.11).

Центральная вена сетчатки (v.centralis retinae) сопровождает соответствующую артерию и имеет такое же, как она, распределение. В стволе зрительного нерва соединяется с центральной артерией сетчатки в так называемый центральный соединительный тяж посредством отростков, отходящих от мягкой мозговой оболочки. Впадает либо непосредственно в пещеристый синус (sinus cavernosus), либо предварительно в верхнюю глазную вену (v.oplithalmica superior).

Вортикозные вены (vv.vorticosae) отводят кровь из хориоидеи, ресничных отростков и большей части мышц ресничного тела, а также радужки. Они просекают склеру в косом направлении в каждом из квадрантов глазного яблока на уровне его экватора. Верхняя пара вортикозных вен впадает в верхнюю глазную вену, нижняя — в нижнюю.
 (450x400, 78Kb)

Отток венозной крови из вспомогательных органов глаза и глазницы происходит по сосудистой системе, которая имеет сложное строение и характеризуется рядом очень важных в клиническом отношении особенностей (рис. 3.14). Все вены этой системы лишены клапанов, вследствие чего отток по ним крови может происходить как в сторону пещеристого синуса, т. е. в полость черепа, так и в систему вен лица, которые связаны с венозными сплетениями височной области головы, крыловидного отростка, крылонебной ямки, мыщелкового отростка нижней челюсти. Кроме того, венозное вплетение глазницы анастомозирует с венами решетчатых пазух и носовой полости. Все эти особенности и обусловливают возможность опасного распространения гнойной инфекции с кожи лица (фурункулы, абсцессы, рожистое воспаление) или из околоносовых пазух в пещеристый синус.

По материалам сайта http://www.glazamed.ru/glaz_bol/index.php
Рубрики:  Анатомичка

Комментарии (0)

АНАТОМИЧКА,Зрительный анализатор человека , ч.34

Дневник

Суббота, 21 Марта 2009 г. 22:26 + в цитатник
Зрительный анализатор человека ,
Вспомогательные органы глаза (organa oculi accesoria)


К вспомогательным органам глаза относятся веки, конъюнктива, мышцы глазного яблока, слезный аппарат и уже описанные выше фасции глазницы.

Веки (palpebrae)

 (400x600, 87Kb)
Веки, верхние и нижние, — мобильные структурные образования, прикрывающие спереди глазные яблоки (рис. 3.6). Благодаря мигательным движениям они способствуют равномерному распределению слезной жидкости по их поверхности. Верхнее и нижнее веки у медиального и латерального углов соединены между собой посредством спаек (comissura palpebralis medialis et lateralis). Приблизительно за 5 мм до слияния внутренние края век меняют направление своего хода и образуют дугообразный изгиб. Очерченное ими пространство называется слезным озером (lacus lacrimalis). Здесь же находятся небольшое розоватого цвета возвышение — слезное мясцо (caruncula lacrimalis) и примыкающая к нему полулунная складка конъюнктивы (plica semilunaris conjunclivae).

При открытых веках края их ограничивают пространство миндалевидной формы, называемое глазной щелью (rima palpebrarum). Длина ее по горизонтали равна 30 мм (у взрослого человека), а высота в центральном отделе колеблется от 10 до 14 мм. В пределах глазной щели видны почти вся роговица, за исключением верхнего сегмента, и окаймляющие ее участки склеры белого цвета. При сомкнутых веках глазная щель исчезает.

Каждое веко состоит из двух пластин: наружной (кожно-мышечной) и внутренней (тарзально-конъюнктивальной).
Кожа век нежная, легко собирается в складки и снабжена сальными и потовыми железами. Лежащая под нею клетчатка лишена жира и очень рыхлая, что способствует быстрому распространению в этом месте отеков и кровоизлияний. Обычно на кожной поверхности хорошо видны две орбитально-нальпебральные складки — верхняя и нижняя. Как правило, они совпадают с соответствующими краями хрящей.

Хрящи век (tarsus superior el inferior) имеют вид слегка выпуклых кнаружи горизонтальных пластин с округленными краями длиной около 20 мм, высотой соответственно 10—12 и 5—6 мм и толщиной 1 мм. Они состоят из очень плотной соединительной ткани. С помощью мощных связок (lig. palpebrale mediale et laterale) концы хряшей соединены с соответствующими стенками глазницы. В свою очередь и глазничные края хрящей прочно связаны с краями глазницы посредством фасциальной ткани (septum orbitale).

В толще хрящей расположены продолговатые альвеолярные мейбо-миевы железы (glandulae tarsales) — около 25 в верхнем хряще и 20 в нижнем. Они идут параллельными рядами и открываются выводными протоками вблизи заднего края век. Эти железы продуцируют липидный секрет, образующий наружный слой прероговичной слезной пленки.

Задняя поверхность век покрыта соединительной оболочкой (конъюнктивой), которая плотно сращена с хрящами, а за их пределами образует мобильные своды — глубокий верхний и более мелкий, легко доступный для осмотра нижний.

Свободные края век ограничены передними и задними гребнями (limbi palpebrales anteriores et posteriores), между которыми имеется пространство шириной около 2 мм. Передние гребни несут в себе корни многочисленных ресниц (расположены в 2—3 ряда), в волосяные фолликулы которых открываются сальные (Цейса) и видоизмененные потовые (Молля) железы. На задних же гребнях нижних и верхних век, в их медиальной части, имеются небольшие возвышения — слезные сосочки (papilli lacrimales). Они погружены в слезное озеро и снабжены точечными отверстиями (pimctum lacrimale), ведущими в соответствующие слезные канальцы (canaliculi lacrimales).

Подвижность век обеспечивается действием двух антагонистических групп мышц — смыкающих и размыкающих их. Первая функция реализуется с помощью круговой мышцы глаза (m. orbicularis oculi), вторая — мышцы, поднимающей верхнее веко (m. levator palpebrae superioris) и нижней тарзальой мышцы (m. tarsalis inferior).

 (350x300, 49Kb)

Круговая мышца глаза состоит из трех частей: глазничной (pars orbitalis), вековой (pare palpebralis) и слезной (pars lacrimalis) (рис. 3.7).
Глазничная часть мышцы представляет собой круговой жом, волокна которого начинаются и крепятся у медиальной связки век (lig. palpebrale mediale) и лобного отростка верхней челюсти. Сокращение мышцы приводит к плотному смыканию век.

Волокна вековой части круговой мышцы также начинаются от медиальной связки век. Затем ход этих волокон становится дугообразным и они доходят до наружного угла глазной щели, где крепятся к латеральной связке век (lig. palpebrale laterale). Сокращение этой группы волокон обеспечивает закрытие век и их мигательные движения.

Слезная часть круговой мышцы века представлена глубоко расположенной порцией мышечных волокон, которые начинаются несколько кзади от заднего слезного гребня слезной кости. Затем они проходят позади слезного мешка и вплетаются в волокна вековой части круговой мышцы, идущие от переднего слезного гребня. В результате слезный мешок оказывается охваченным мышечной петлей, которая при сокращениях и расслаблениях во время мигательных движений век то расширяет, то суживает просвет слезного мешка. Благодаря этому происходят всасывание слезной жидкости из конъюнктивальной полости (через слезные точки) и продвижение ее по слезным путям в полость носа. Этому процессу способствуют и сокращения тех пучков "слезной" мышцы, которые окружают слезные канальцы.

Особо выделяют и те мышечные волокна круговой мышцы века, которые расположены между корнями ресниц вокруг протоков мейбомиевых желез (m. ciliaris Riolani). Сокращение этих волокон способствует выделению секрета из упомянутых желез и прижатию краев век к глазному яблоку.

Круговая мышца глаза иннервиру-ется скуловыми и передневисочными ветвями лицевого нерва, которые лежат достаточно глубоко и входят в нее преимущественно с нижненаружней стороны. Это обстоятельство следует учитывать при необходимости произвести акинезию мышцы (обычно при выполнении полостных операций на глазном яблоке).

Мышца, поднимающая верхнее веко, начинается вблизи зрительного канала, затем идет под крышей глазницы и оканчивается тремя порциями — поверхностной, средней и глубокой. Первая из них, превращаясь в широкий апоневроз, проходит через глазничную перегородку, между волокнами вековой части круговой мышцы и оканчивается под кожей века. Средняя порция, состоящая из тонкого слоя гладких волокон (m. tarsalis superior, m. Mullen), вплетается в верхний край хряща. Глубокая пластинка, подобно поверхностной, также заканчивается сухожильной растяжкой, которая достигает верхнего свода конъюнктивы и крепится к нему. Две порции леватора (поверхностная и глубокая) иннервируются глазодвигательным нервом, средняя — шейным симпатическим нервом.

Нижнее веко оттягивается вниз слабо развитой глазной мышцей (t. tarsalis inferior), соединяющей хрящ с нижним сводом конъюнктивы. В последний вплетаются также фасци-альные отростки влагалища нижней прямой мышцы.

Веки богато снабжены сосудами за счет ветвей глазной артерии (a. ophthalmica), входящей в систему внутренней сонной артерии, а также анастомозов от лицевой и верхнечелюстной артерий (аа. facialis et maxillaris). Две последние артерии принадлежат уже наружной сонной артерии. Разветвляясь, все эти сосуды образуют артериальные дуги — две на верхнем веке и одну на нижнем.

Веки имеют также хорошо развитую лимфатическую сеть, которая расположена на двух уровнях — на передней и задней поверхностях хрящей. При этом лимфатические сосуды верхнего века впадают в предушные лимфатические узлы, а нижнего — в подчелюстные.
Чувствительная иннервация кожи лица осуществляется за счет трех ветвей тройничного нерва и веточек лицевого нерва.

Конъюнктива (tunica conjunctiva)

Конъюнктива — тонкая (0,05— 0,1 мм) слизистая оболочка, которая покрывает всю заднюю поверхность век (tunica conjunctiva palpebrarum), а затем, образовав своды конъюнктивального мешка (fornix conjunctivae superior et inferior), переходит на переднюю поверхность глазного яблока (tunica conjunctiva bulbi) и оканчивается у лимба (см. рис. 3.6). Ее называют соединительной оболочкой, так как она соединяет веко и глаз.
В конъюнктиве век выделяют две части — тарзальную, плотно сращенную с подлежащей тканью, и мобильную глазничную в виде переходной (к сводам) складки.

При закрытых веках между листками конъюнктивы образуется щелевидная полость, более глубокая вверху, напоминающая мешок. Когда веки открыты, объем его заметно уменьшается (на величину глазной щели). Значительно изменяются объем и конфигурация конъюнктивального мешка и при движениях глаза.
Конъюнктива хряща покрыта многослойным цилиндрическим эпителием и содержит у края век бокаловидные клетки, а около дистального конца хряща — крипты Генле. И те, и другие секретируют муцин. В норме сквозь конъюнктиву просвечивают мейбомиевы железы, образующие рисунок в виде вертикального частокола. Под эпителием находится ретикулярная ткань, прочно спаянная с хрящом. У свободного края века конъюнктива гладкая, но уже на расстоянии 2—3 мм от пего приобретает шероховатость, обусловленную наличием здесь сосочков.

Конъюнктива переходной складки гладкая и покрыта 5—6-слойным плоским эпителием с большим количеством бокаловидных слизистых клеток (выделяют муцин). Ее под-эпителиальная рыхлая соединительная ткань, состоящая из эластических волокон, содержит плазматические клетки и лимфоциты, способные образовывать скопления в виде фолликулов или лимфом. Благодаря наличию хорошо развитой субконъюнктивальной ткани эта часть конъюнктивы весьма подвижна.

На границе между тарзальной и орбитальной частями конъюнктивы находятся дополнительные слезные железы Вольфринга (3 у верхнего края верхнего хряща и еще одна ниже нижнего хряща), а в области сводов — железки Краузе, количество которых составляет 6—8 на нижнем веке и 15—40 — на верхнем. По строению они аналогичны главной слезной железе, выводные протокикоторой открываются в латеральной части верхнего конъюнктивалыюго свода.

Конъюнктива глазного яблока покрыта многослойным плоским нео-роговевающим эпителием и рыхло соединена со склерой, поэтому может легко смещаться по ее поверхности. Лимбальная часть конъюнктивы содержит островки цилиндрического эпителия с секретирующими клетками Бехера. В этой же зоне, радиально к лимбу (в виде пояска шириной 1 — 1,5 м), расположены клетки Мапца, продуцирующие муцин.

 (450x300, 63Kb)

Кровоснабжение конъюнктивы век осуществляется за счет сосудистых стволов, отходящих от артериальных дуг пальпебральпых артерий (см. рис. 3.13). В конъюнктиве же глазного яблока содержатся два слоя сосудов — поверхностный и глубокий.

Поверхностный образован ветвями, отходящими от артерий век, а также передними ресничными артериями (ветви мышечных артерий). Первые из них идут в направлении от сводов конъюнктивы к роговице, вторые — навстречу им. Глубокие (энисклеральпые) сосуды конъюнктивы являются ветвями только передних ресничных артерий. Они направляются и сторону роговицы и образуют вокруг нее густую сеть. Основные же стволы передних ресничных артерий, не дойдя до лимба, уходят внутрь глаза и участвуют в кровоснабжении ресничного тела.

Вены конъюнктивы сопутствуют соответствующим артериям. Отток крови идет в основном по пальпебральной системе сосудов в лицевые вены. Конъюнктива имеет также богатую сеть лимфатических сосудов. Отток лимфы от слизистой оболочки верхнего века происходит в предушные лимфатические узлы, а от нижнего — в подчелюстные.

Чувствительная иннервация конъюнктивы обеспечивается слезным, подблоковым и подглазничным нервами (nn. lacrimalis, infratrochlearis et n. infraorbitalis).

По материалам сайта http://www.glazamed.ru/glaz_bol/index.php
Рубрики:  Анатомичка

Комментарии (0)

АНАТОМИЧКА,Зрительный анализатор человека , ч.33

Дневник

Среда, 18 Марта 2009 г. 23:06 + в цитатник
Зрительный анализатор человека относится к сенсорным системам организма и в анатомо-функциональном отношении состоит из нескольких взаимосвязанных, но различных по целевому назначению структурных единиц (рис. 3.1): двух глазных яблок, расположенных во фронтальной плоскости в правой и левой глазницах, с их оптической системой, позволяющей фокусировать на сетчатке (собственно рецепторная часть анализатора) изображения всех объектов внешней среды, находящихся в пределах области ясного видения каждого из них; системы "переработки", кодирования и передачи воспринятых изображений по каналам нейронной связи в корковый отдел анализатора; вспомогательных органов, аналогичных для обоих глазных яблок (веки, конъюнктива, слезный аппарат, глазодвигательные мышцы, фасции глазницы); системы жизнеобеспечения структур анализатора (кровоснабжение, иннервация, выработка внутриглазной жидкости, регуляция гидро и гемодинамики).
1 (500x550, 86Kb)

Глазное яблоко (bulbus oculi)

Глаз человека имеет не совсем правильную шаровидную форму. У здоровых новорожденных его размеры, определенные путем расчетов, равны (в среднем) по сагиттальной оси 17 мм, поперечной 17 мм и вертикальной 16,5 мм. У взрослых людей с соразмерной рефракцией глаза эти показатели составляют 24,4; 23,8 и 23,5 мм соответственно. Масса глазного яблока новорожденного находится в пределах до 3 г, взрослого человека — до 7—8 г.

Анатомические ориентиры глаза: передний полюс — соответствует вершине роговицы, задний полюс — его противоположной точке на склере. Линия, соединяющая эти полюса, называется наружной осью глазного яблока. Прямая, мысленно проведенная для соединения задней поверхности роговицы с сетчаткой в проекции указанных полюсов, именуется его внутренней (сагиттальной) осью. Лимб — место перехода роговицы в склеру — используют в качестве ориентира для точной локализационной характеристики обнаруженного патологического фокуса в часовом отображении (меридианальный показатель) и в линейных величинах, являющихся показателем удаленности от точки пересечения меридиана с лимбом (рис. 3.2).

 (500x400, 70Kb)

В целом макроскопическое строение глаза представляется, на первый взгляд, обманчиво простым: две покровные (конъюнктива и влагалище глазного яблока) и три основные оболочки (фиброзная, сосудистая, сетчатая), а также содержимое его полости в виде передней и задней камер (заполнены водянистой влагой), хрусталика и стекловидного тела. Однако гистологическая структура большинства тканей достаточно сложна.

Фиброзная оболочка глаза (tunica fibrosa bulbi)

Фиброзная оболочка глаза состоит из роговицы и склеры, которые по анатомической структуре и функциональным свойствам резко отличаются друг от друга.

Роговица (cornea) — передняя прозрачная часть (~1/6) фиброзной оболочки. Место перехода ее в склеру (лимб) имеет вид полупрозрачного кольца шириной до 1 мм. Наличие его объясняется тем, что глубокие слои роговицы распространяются кзади несколько дальше, чем передние. Отличительные качества роговицы: сферична (радиус кривизны передней поверхности ~7,7 мм, задней 6,8 мм), зеркально блестящая, лишена кровеносных сосудов, обладает высокой тактильной и болевой, но низкой температурной чувствительностью, преломляет световые лучи с силой 40—43 дптр.

Горизонтальный диаметр роговицы у здоровых новорожденных равен 9,62 ± 0,1 мм, у взрослых достигает 11 мм (вертикальный диаметр обычно меньше на ~1 мм). В центре она всегда тоньше, чем на периферии. Этот показатель также коррелирует с возрастом: например, в 20—30 лет толщина роговицы соответственно равна 0,534 и 0,707 мм, а в 71—80 лет -0,518 и 0,618 мм.

При закрытых веках температура роговицы у лимба равна 35,4 °С, а в центре — 35,1 °С (при открытых веках ~ 30 °С). В связи с этим в ней возможен рост плесневых грибков с развитием специфического кератита.
Что касается питания роговицы, то оно осуществляется двумя путями: за счет диффузии из перилимбальной сосудистой сети, образованной передними ресничными артериями, и осмоса из влаги передней камеры и слезной жидкости.

Склера (sclera) — непрозрачная часть (5/6) наружной (фиброзной) оболочки глазного яблока толщиной 0,3—1 мм. Она наиболее тонкая (0,3—0,5 мм) в области экватора и в месте выхода из глаза зрительного нерва здесь внутренние слои склеры образуют решетчатую пластинку, через которую проходят аксоны ганглиозных клеток сетчатки, образующие диск и стволовую часть зрительного нерва.

Зоны истончения склеры уязвимы для воздействия повышенного внутриглазного давления (развитие стафилом, экскавации диска зрительного нерва) и повреждающих факторов, прежде всего механических (субконъюнктивальные разрывы в типичных местах, обычно на участках между местами прикрепления экстраокулярных мышц). Вблизи роговицы толщина склеры составляет 0,6— 0,8 мм.

В области лимба происходит слияние трех совершенно разных структур — роговицы, склеры и конъюнктивы глазного яблока. Вследствие этого данная зона может быть исходным пунктом для развития полиморфных патологических процессов — от воспалительных и аллергических до опухолевых (папиллома, меланома) и связанных с аномалиями развития (дермоид).

Лимбальная зона богато васкуляризирована за счет передних ресничных артерий (ветви мышечных артерий), которые на расстоянии 2—3 мм от нее отдают веточки не только внутрь глаза, но и еще в трех направлениях: непосредственно к лимбу (образуют краевую сосудистую сеть), эписклере и прилежащей конъюнктиве. По окружности лимба расположено густое нервное сплетение, образованное длинными и короткими ресничными нервами. От него отходят ветви, входящие затем в роговицу.

В ткани склеры мало сосудов, она почти лишена чувствительных нервных окончаний и предрасположена к развитию патологических процессов, характерных для коллагенозов.

К поверхности склеры крепятся 6 глазодвигательных мышц. Кроме того, в ней имеются особые каналы (выпускники, эмиссарии). По одним из них к сосудистой оболочке проходят артерии и нервы, а по другим — выходят венозные стволы различного калибра.

На внутреней поверхности переднего края склеры расположен циркулярный желобок шириной до 0,75 мм. Задний край его несколько выступает кпереди в виде шпоры, к которой крепится ресничное тело (переднее кольцо прикрепления сосудистой оболочки). Передний край желобка граничит с десцеметовой оболочкой роговицы. На дне его у заднего края находится венозный синус склеры (шлеммов канал). Остальная часть склерального углубления занята трабекулярной сеточкой (reticulum trabeculare).

Сосудистая оболочка глаза (tunica vasculosa bulbi)

Сосудистая оболочка глаза состоит из трех тесно связанных между собой частей — радужки, ресничного тела и хориоидеи.

Радужка (iris) — передняя часть сосудистой оболочки и в отличие от двух других ее отделов расположена не пристеночно, а во фронтальной по отношению к лимбу плоскости имеет форму диска с отверстием (зрачком) в центре.

По краю зрачка располагается, кольцевидный сфинктер, который иннервируется глазодвигательным нервом. Радиально ориентированный дилататор иннервируется симпатическим нервом.

Толщина радужки 0,2—0,4 мм; она особенно гонкая в корневой зоне, т. е. на границе с ресничным телом. Именно здесь при тяжелых контузиях глазного яблока может произойти ее отрыв (iridodialys).

Ресничное (цилиарное) тело (corpus ciliare) — средняя часть сосудистой оболочки — находится за paдужкой, поэтому недоступно непосредственному осмотру. На поверхность склеры ресничное тело проецируется в виде пояска шириной 6—7 мм, начинающегося у склеральной шпоры, т. е. на расстоянии 2 мм от лимба. Макроскопически в этом кольце можно выделить две части — плоскую (orbiculus ciliaris) шириной 4 мм, которая граничит с зубчатой линией (ora serrata) сетчатки, и ресничную (corona ciliaris) шириной 2— 3 мм с 70—80 беловатыми ресничными отростками (processus ciliares). Каждая часть имеет вид валика или пластинки высотой около 0,8 мм, шириной и длиной до 2 мм.

Внутренняя поверхность ресничного тела связана с хрусталиком посредством так называемого ресничного пояска (zonula ciliaris), состоящего из множества очень тонких стекловидных волоконец (fibrae zonulares). Этот поясок выполняет роль связки, подвешивающей хрусталик. Он соединяет ресничную мышцу с хрусталиком в единый аккомодационный аппарат глаза.

Сосудистая сеть ресничного тела формируется за счет двух длинных задних ресничных артерий (ветви глазной артерии), которые проходят через склеру у заднего полюса глаза, а затем идут в супрахориоидальном пространстве по меридиану 3 и 9 часов; анастомозируют с разветвлениями передних и задних коротких ресничных артерий. Чувствительная иннервация ресничного тела та же, что и у радужки, двигательная (для разных порций аккомодационной мышцы) — от глазодвигательного и симпатического нервов.

Хориоидея (chorioidea), или собственно сосудистая оболочка, выстилает весь задний отдел склеры на протяжении от зубчатой линии до зрительного нерва, образуется задними короткими ресничными артериями (6—12), которые проходят через склеру у заднего полюса глаза.
Хориоидея имеет ряд анатомических особенностей: лишена чувствительных нервных окончаний, поэтому развивающиеся в ней патологические процессы не вызывают болевых ощущений;
 ее сосудистая сеть не анастомозирует с передними ресничными артериями, вследствие этого при хориоидитах передний отдел глаза остается интактным;
 обширное сосудистое ложе при небольшом числе отводящих сосудов (4 вортикозные вены) способствует замедлению кровотока и оседанию здесь возбудителей различных заболеваний;
 органично связана с сетчаткой, которая при заболеваниях хориоидеи, как правило, также вовлекается в патологический процесс;
 из-за наличия перихориоидального пространства достаточно легко отслаивается от склеры. Удерживается в нормальном положении в основном благодаря отходящим венозным сосудам, перфорирующим ее в области экватора. Стабилизирующую роль играют также сосуды и нервы, проникающие в хориоидею из этого же пространства.

Внутренняя (чувствительная) оболочка глаза [tunica interna (sensoria) bulbi]

Внутренняя оболочка глаза — сетчатка (retina) — выстилает изнутри всю поверхность сосудистой оболочки. В соответствии со структурой, а значит, и функцией в ней различают две части — оптическую (pars optica retinae) и реснично-радужковую (pars ciliaris et iridica retinae). Первая представляет собой высокодифференци-рованную нервную ткань с фоторецепторами, воспринимающими адекватные световые лучи с длиной волны от 380 до 770 нм. Эта часть сетчатки распространяется от диска зрительного нерва до плоской части ресничного тела, где заканчивается зубчатой линией. Далее в редуцированном до двух эпителиальных слоев виде, потеряв оптические свойства, она покрывает внутреннюю поверхность ресничного тела и радужки.

Толщина сетчатки на разных участках неодинакова: у края диска зрительного нерва 0,4—0,5 мм, в области фовеолы желтого пятна 0,07—0,08 мм, у зубчатой линии 0,14 мм. К. подлежащей сосудистой оболочке сетчатка крепится прочно лишь в нескольких зонах: вдоль зубчатой линии, вокруг диска зрительного нерва и по краю желтого пятна. На остальных участках соединение рыхлое, поэтому именно здесь она легко отслаивается от своего пигментного эпителия.

Почти на всем протяжении оптическая часть сетчатки состоит из 10 слоев. Ее фоторецепторы, обращенные к пигментному эпителию, представлены колбочками (около 7 млн) и палочками (100— 120 млн). Первые группируются в центральных отделах оболочки, вторые в центре отсутствуют, а их максимальная плотность отмечается в 10—13° от него. Далее к периферии количество палочек постепенно уменьшается. Основные элементы сетчатки находятся в устойчивом положении благодаря вертикально расположенным опорным клеткам Мюллера и межуточной ткани. Стабилизирующую функцию выполняют и пограничные мембраны сетчатки (membrana limitans interna et externa).

Анатомически и при офтальмоскопии в сетчатке четко выявляются два очень важных в функциональном отношении участка — диск зрительного нерва и желтое пятно, центр которого находится на расстоянии 3,5 мм от височного края диска. По мере приближения к желтому пятну строение сетчатки существенно меняется: сначала исчезает слой нервных волокон, затем — ганглиозных клеток, далее — внутренний плексиформный слой, слой внутренних ядер и наружный плексиформный. Фовеола желтого пятна представлена только слоем колбочек, поэтому обладает самой высокой разрешающей способностью (область центрального зрения, занимающая в пространствет предметов -1,2°).

 (500x330, 65Kb)

Параметры фоторецепторов

Палочки: длина 0,06 мм, диаметр 2 мкм. Наружные членики содержат пигмент — родопсин, поглощающий часть спектра электромагнитного светового излучения в диапазоне зеленых лучей (максимум 510 нм).

Колбочки: длина 0,035 мм, диаметр 6 мкм. В трех различных типах колбочек ("красных", "зеленых" и "синих") содержится зрительный пигмент с различными показателями поглощения света. У "красных" колбочек он (иодопсин) адсорбирует спектральные лучи с длиной волны -565 нм, у "зеленых" — 500 нм, у "синих" — 450 нм.
Пигменты колбочек и палочек "встроены" в мембраны — диски их наружных сегментов и являются интегральными белковыми субстанциями.

Палочки и колбочки обладают различной световой чувствительностью. Первые функционируют при яркости окружающей среды до 1 кд*М-2 (ночное, скотопическое зрение), вторые — свыше 10 кд*м-2 (дневное, фотопическое зрение). Когда яркость колеблется в пределах от 1 до 10 кд*м-2 (1 КД (кандела) — единица силы света, эквивалентная яркости абсолютно черного тела при температуре затвердевания платины (60 кд с 1 см2)), на определенном уровне функционируют все фоторецепторы (сумеречное, мезопическое зрение).

Диск зрительного нерва находится в носовой половине сетчатки (на расстоянии 4 мм от заднего полюса глаза). Он лишен фоторецепторов, поэтому в поле зрения соответственно месту его проекции имеется слепая зона.
Питание сетчатки осуществляется из двух источников: шесть внутренних слоев получают его из центральной артерии сетчатки (ветвь глазной), а нейроэпителий — из хориокапиллярного слоя собственно сосудистой оболочки.

Ветви центральных артерий и вены сетчатки проходят в слое нервных волокон и отчасти в слое ганглиоз-ных клеток. Они образуют слоистую капиллярную сеть, которая отсутствует лишь в фовеоле желтого пятна (см. рис. 3.10).

Важной анатомической особенностью сетчатки является то, что аксоны ее ганглиозных клеток на всем протяжении лишены миелиновой обкладки (один из факторов, определяющих прозрачность ткани). Кроме того, она, как и сосудистая оболочка, лишена чувствительных нервных окончаний.

Внутреннее ядро (полость) глаза

Полость глаза содержит светопроводящие и светопреломляющие среды: водянистую влагу, заполняющую его переднюю и заднюю камеры, хрусталик и стекловидное тело.

Передняя камера глаза (camera anterior bulbi) представляет собой пространство, ограниченное задней поверхностью роговицы, передней поверхностью радужки и центральной частью передней капсулы хрусталика. Место, где роговица переходит в склеру, а радужка — в ресничное тело, называется углом передней камеры (angulus iridocornealis). В его наружной стенке находится дренажная (для водянистой влаги) система глаза, состоящая из трабекулярной сеточки, склерального венозного синуса (шлеммов канал) и коллекторных канальцев (выпускников). Через зрачок передняя камера свободно сообщается с задней. В этом месте она имеет наибольшую глубину (2,75— 3,5 мм), которая затем постепенно Уменьшается но направлению к периферии (см. рис. 3.2).

Задняя камера глаза (camera posterior bulbi) находится за радужкой, которая является ее передней стенкой, и ограничена снаружи ресничным телом, сзади стекловидным телом. Внутреннюю стенку образует экватор хрусталика. Все пространство задней камеры пронизано связками ресничного пояска.

В норме обе камеры глаза заполнены водянистой влагой, которая по своему составу напоминает диализат плазмы крови. Водянистая влага содержит питательные вещества, в частности глюкозу, аскорбиновую кислоту и кислород, потребляемые хрусталиком и роговицей, и уносит из глаза отработанные продукты обмена — молочную кислоту, углекислый газ, отшелушившиеся пигментные и другие клетки.

Обе камеры глаза вмещают 1,23— 1,32 см3 жидкости, что составляет 4 % всего содержимого глаза. Минутный объем камерной влаги равен в среднем 2 мм3, суточный — 2,9 см3. Иными словами, полный обмен камерной влаги происходит в течение 10 ч.

Между притоком и оттоком внутриглазной жидкости существует равновесный баланс. Если по каким-либо причинам он нарушается, это приводит к изменению уровня внутриглазного давления, верхняя граница которого в норме не превышает 27 мм рт.ст. (при измерении тонометром Маклакова массой 10 г). Основной движущей силой, обеспечивающей непрерывный ток жидкости из задней камеры в переднюю, а затем через угол передней камеры за пределы глаза, является разность давлений в полости глаза и венозном синусе склеры (около 10 мм рт.ст.), а также в указанном синусе и передних ресничных венах.

Хрусталик (lens) представляет собой прозрачное полутвердое бессосудистое тело в форме двояковыпуклой линзы, заключенной в прозрачную капсулу, диаметром 9—10 мм и толщиной (в зависимости от аккомодации) 3,6—5 мм. Радиус кривизны его передней поверхности в покое аккомодации равен 10 мм, задней — 6 мм (при максимальном напряжении аккомодации 5,33 и 5,33 мм соответственно), поэтому в первом случае преломляющая сила хрусталика составляет в среднем 19,11 дитр, во втором — 33,06 дитр. У новорожденных хрусталик почти шаровидный, имеет мягкую консистенцию и преломляющую силу до 35,0 дитр.

В глазу хрусталик находится сразу же за радужкой в углублении на передней поверхности стекловидного тела — в стекловидной ямке (fossa hyaloidea). В этом положении он удерживается многочисленными стекловидными волокнами, образующими в сумме подвешивающую связку (ресничный поясок).

Задняя поверхность хрусталика. так же как и передняя, омывается водянистой влагой, поскольку почти на всем протяжении отделена от стекловидного тела узкой щелью (ретролентальное пространство — spaiium retrolentale). Однако по наружному краю стекловидной ямки это пространство ограничено нежной кольцевидной связкой Вигера, расположенной между хрусталиком и стекловидным телом. Питание хрусталика осуществляется путем обменных процессов с камерной влагой.

Стекловидная камера глаза (camera vitrea bulbi) занимает задний отдел его полости и заполнена стекловидным телом (corpus vitreum), которое спереди прилежит к хрусталику, образуя в этом месте небольшое углубление (fossa hyaloidea), а на остальном протяжении контактирует с сетчаткой. Стекловидное тело представляет собой прозрачную студенистую массу (типа геля) объемом 3,5—4 мл и массой примерно 4 г. Оно содержит в большом количестве гиачуроновую кислоту и воду (до 98 %). Однако только 10 % воды связано с компонентами стекловидного тела, поэтому обмен жидкости в нем происходит довольно активно и достигает, по некоторым данным, 250 мл в сутки.

Макроскопически выделяют собственно стекловидную строму (stroma vitreum), которую пронизывает стекловидный (клокетов) канал, и окружающую ею снаружи гиалоидную мембрану (рис. 3.3).
Стекловидная строма состоит из достаточно рыхлого центрального вещества, в котором имеются оптически пустые зоны, заполненные жидкостью (humor vitreus), и коллагеновые фибриллы. Последние, уплотняясь, образуют несколько витреальных трактов и более плотный кортикальный слой.

Гиалоидпая мембрана состоит из двух частей — передней и задней. Граница между ними проходит по зубчатой линии сетчатки. В свою очередь передняя пограничная мембрана имеет две анатомически обособленные части — захрусталиковую и зонулярную. Границей между ними служит круговая гиалоидокапсулярная связка Вигера. прочная только в детском возрасте.

С сетчаткой стекловидное тело плотно связано лишь в области своего так называемого переднего и заднего основания. Под первым подразумевают область, где стекловидное тело одновременно крепится к эпителию ресничного тела на расстоянии 1—2 мм кпереди от зубчатого края (ora serrata) сетчатки и на протяжении 2—3 мм кзади от нее. Заднее же основание стекловидного тела — это зона фиксации его вокруг диска зрительного нерва. Полагают, что стекловидное тело имеет связь с сетчаткой также в области макулы.

Стекловидный (клокетов) канал (canalis hyaloideus) стекловидного тела начинается воронкообразным расширением от краев диска зрительного нерва и проходит через его строму по направлению к задней капсуле хрусталика. Максимальная ширина канала 1—2 мм. В эмбриональном периоде в нем проходит артерия стекловидного тела, которая к моменту рождения ребенка запустевает.

Как уже отмечалось, в стекловидном теле существует постоянный ток жидкости. Из задней камеры глаза жидкость, продуцируемая ресничным телом, через зонулярную щель попадает в передний отдел стекловидного тела. Далее жидкость, попавшая в стекловидное тело, движется к сетчатке и препапиллярному отверстию в гиалоидной мембране и оттекает из глаза как через структуры зрительного нерва, так и по периваскулярным пространствам ретинальных сосудов.


По материалам сайта http://www.glazamed.ru/glaz_bol/index.php
Рубрики:  Анатомичка

Комментарии (1)

АНАТОМИЧКА, Neurology, Головной мозг, ч.32

Дневник

Воскресенье, 25 Января 2009 г. 19:28 + в цитатник
ГОЛОВНОЙ МОЗГ (encephalon) - передний отдел центральной нервной системы, расположенный в полости черепа.

Головной мозг подразделяют на пять отделов: продолговатый, задний, средний, промежуточный и конечный мозг. Продолговатый, задний, средний и нередко промежуточный мозг объединяют под названием "ствол головного мозга".

 (700x568, 59Kb)
Сагиттальный разрез головного мозга: 1 — лобная доля; 2 — поясная извилина; 3 — мозолистое тело; 4 — прозрачная перегородка; 5 — свод; 6 — передняя спайка; 7 — зрительный перекрест; 8 — подталамическая область; 9 — гипофиз; 10 — височная доля; 11 — мост; 12 — продолговатый мозг; 13 — четвертый желудочек; 14 — мозжечок; 15 — водопровод мозга; 16 — затылочная доля; 17 — пластинка крыши; 18 — шишковидное тело; 19 — теменная доля; 20 — таламус.

Продолговатый мозг

 (329x400, 16Kb)

Продолговатый мозг является продолжением спинного в ствол, имеет вид луковицы, расширенный верх которой граничит с мостом, а нижняя граница находится на уровне большого затылочного отверстия. Выполняет рефлекторную и проводниковую функции. На вентральной поверхности проходят нисходящие, на дорзальной – восходящие пути. В нем расположено вестибулярное ядро – обеспечивает рефлексы, определяющие положение головы и тела в пространстве, перераспределение мышечного тонуса (вместе со средним).

В продолговатом мозге находятся дыхательный, сердечно-сосудистый, пищевой (сосание, жевание, глотание, выделение соков, моторика) центры и соответствующие защитные рефлексы – кашель, чихание, рвота, мигание, слезоотделение.

Задний мозг

 (411x400, 17Kb)

Задний мозг состоит из двух частей: вентральной – моста (в нем находятся восходящие и нисходящие проводящие пути) и дорзальной – мозжечка. Мозжечок образован двумя полушариями и узкой срединной частью – червем. Поверхность имеет многочисленные борозды, которые делят полушария на доли и дольки. Снаружи серое вещество образует сплошной покров – кору; внутри серое вещество образует скопления – ядра.

Мозжечок связан со стволом 3 парами ножек (проводящие пути): с продолговатым, мостом и средним. Получает сигналы от проприорецепторов мышц, сухожилий, связок, от вестибулярных ядер продолговатого мозга, подкорковых ядер и коры больших полушарий (зрительной, слуховой, тактильной). В свою очередь посылает импульсы ко всем отделам ЦНС.

Играет важную роль в регуляции двигательной активности: принимает участие в регуляции мышечного тонуса, в сохранении позы и равновесия, в реализации быстрых последовательных движений.

Средний мозг

 (500x342, 63Kb)

Обозначения: 1. Крыша среднего мозга, tectum mesencephalicum. 2. Покрышка среднего мозга, tegmentum mesencephalicum. 3. Основание ножки мозга, basis pedunculi cerebri. 4. Красное ядро, nucl. ruber.5. Черное вещество, substantia nigra. 6. Ядро глазодвигательного нерва, nucl. nervi oculomotorii. 7. Добавочное ядро глазодвигательного нерва, nucl. oculomotorium accessorius. 8. Перекресты покрышки, decussationes tegmenti. 9. Корешки глазодвигательного нерва, n. oculomotorius. 10. Лобно-мостовой тракт, tr. frontopontinus. 11. Корково-ядерный тракт, tr. corticonuclearis. 12. Кортико-спинальный тракт, tr. corticospinalis (pyramidalis). 13. Височно-теменно-затылочно-мостовой тракт, tr. occipitotemporoparietopontinus. 14. Медиальная петля, lemniscus medialis. 15. Ручка нижнего холмика, brachium colliculi inferioris. 16. Ядро среднемозгового пути тройничного нерва, nucl. tractus mesencephalici nervi trigeminalis. 17. Верхние холмики, colliculus cranialis (superior). 18. Водопровод среднего мозга (сильвиев водопровод), aqueductus mesencephali (cerebri). 19. Центральное серое вещество, substantia grisea centralis.

Средний мозг содержит важнейшие подкорковые центры зрения и слуха (на дорзальной поверхности расположены 4 бугра – четверохолмие: верхние бугры содержат центры зрения, нижние – слуха). Отвечает за ориентировочные, сторожевые и оборонительные рефлексы в ответ на неожиданные световые или звуковые раздражители, обеспечивает аккомодацию и конвергенцию глаз. Кроме того, принимает участие в регуляции движений и поддержании мышечного тонуса.

Промежуточный мозг

 (469x418, 17Kb)

Промежуточный мозг содержит две основные структуры – таламус и гипоталамус. В таламус сходятся чувствительные пути всех рецепторов (исключая обонятельные), идущие в кору больших полушарий. В нем происходит первичный анализ поступающей информации, определяются физические параметры стимулов.
Образован ядрами, которые функционально можно разделить на специфические (переключают информацию в специфические зоны коры), неспецифические (в ретикулярную формацию и ассоциативные области коры).

Таламус осуществляет переработку и объединение информации, полученной по разным каналам связи. Гипоталамус – высший центр вегетативной НС. Играет ключевую роль в поддержании гомеостаза: температуры тела, концентрации веществ в тканях, осмотического давления, рН (имеет собственные рецепторы). Контролирует все виды обмена веществ: белковый, углеводный, жировой и водно-солевой. Связан с центрами парасимпатического и симпатического отделов, регулирует секрецию гормонов гипофиза, обеспечивая связь нервной и гуморальной регуляций. Участвует в организации различных форм поведения, связанных с удовлетворением основных жизненных потребностей: утоление жажды, голода, реализации полового инстинкта.

Ретикулярная формация – совокупность нервных структур в центральной части ствола (в продолговатом, среднем и промежуточном) и спинном мозге, образующих единый функциональный комплекс: скопления клеток разных типов с сильно ветвящимися отростками, образующие густую сеть. Все чувствительные пути к сенсорным зонам коры дают ответвления к клеткам ретикулярной формации.

Она регулирует возбудимость всех отделов ЦНС, усиливает или тормозит рефлексы спинного мозга. Характерна очень высокая чувствительность к медиаторам, гормонам, лекарствам, продуктам обмена веществ. Активирует кору, поддерживает состояние бодрствования и внимания (при нарушениях – состояние глубокого сна). Участвует в регуляции вегетативных функций и деятельности ЖВС. Филогенетически наиболее древняя система двигательного контроля. Находится под контролем коры больших полушарий.

Лимбическая система

 (620x559, 47Kb)

Совокупность структур конечного (базальные ганглии), промежуточного и среднего отделов мозга. Участвует в регуляции вегетативных функций (ее определяют как «висцеральный мозг»). Организует процессы инстинктивного поведения (пищевые, половые, материнские, защитные реакции, страх, агрессивная реакция, ярость, чувство удовольствия или неприятные ощущения), психической деятельности (влечения, мотивации, эмоциональная окраска поведенческих актов). Участвует в процессах сохранения памяти, регуляции состояний бодрствования и сна.

Конечный мозг

 (618x405, 35Kb)

Конечный мозг – самый крупный и главный отдел, разделен на 2 полушария, соединенные системой комиссур (мозолистое тело). В состав каждого входят базальные ганглии, кора больших полушарий и обонятельный мозг.

Мозолистое тело – волокна (комиссуральные), соединяющие кору обоих больших полушарий, связывают симметричные участки полушарий, а также дают ассоциативные волокна к отделам полушария той же стороны. Функция: обмен импульсацией между полушариями (что усиливает их координацию, функциональную асимметрию). Важная система переработки информации в процессе обучения.

Базальные ганглии – скопления серого вещества в толще белого вещества больших полушарий. Контролируют и координируют двигательную активность (бессознательные автоматические движения), инстинктивное поведение, формируют эмоциональные реакции. К ним относятся: хвостатое ядро, скорлупа (объединяются в полосатое тело), бледный шар (со скорлупой образует чечевицеобразное ядро), ограда и миндалевидное тело.

Серое вещество коры – самая молодая часть, покрывает полушария как бы плащом, отсюда и названия – плащ (мантия), или кора головного мозга. Она сложена в складки (борозды) и валики между ними (извилины).
Глубокие постоянные борозды делят каждое полушарие на доли: лобную, теменную, височную, затылочную.

Лобная регулирует произвольное движение частей тела, координирует двигательные механизмы речи, связана с творческим мышлением.

Теменная ответственна за соматическую чувствительность, осуществляет пространственную ориентацию организма, связана с памятью, относящейся к речи и обучению. Затылочная доля – зрительный центр.

Височная воспринимает слуховые ощущения, участвует в оценке пространства и в процессах памяти. В пределах долей выделяют поля, часть из них собственно сенсорные (входят в состав соответствующих анализаторов), но у человека подавляющее большинство полей являются ассоциативными, в них происходит анализ, синтез полученных данных, сопоставление с предшествующим опытом.

По материалам сайта: http://mylearn.ru/kurs/28

Вы можете посмотреть трехмерную модель мозга: http://visualscience.ru/illustrations/modelling/human_brain/
Рубрики:  Анатомичка

Комментарии (0)

АНАТОМИЧКА, Neurology, Нервная система, ч.31

Дневник

Среда, 17 Декабря 2008 г. 23:35 + в цитатник
НЕРВНАЯ СИСТЕМА (Neurology )

Выше уже сказано, что в вегетативной нервной системе передача информации осуществляется, главным образом, с помощью медиаторов — ацетилхолина и норадреналина. Поэтому пути передачи и синапсы называют холинергическими (медиатор — ацетилхолин) или адренергическими (медиатор — норадреналин). Аналогично этому рецепторы, с которыми связывается ацетилхолин, называют холинорецепторами, а рецепторы норадреналина — адренорецепторами. На адренорецепторы влияет также гормон, выделяемый надпочечниками, — адреналин.

 (400x553, 28Kb)
Общая схема передачи информации по звеньям вегетативной нервной системы

Холино- и адренорецепторы неоднородны и различаются чувствительностью к некоторым химическим веществам. Так, среди холинорецепторов выделяют мускаринчувствительные (м-холинорецепторы) и никотинчувствительные (н-холинорецепторы) — по названиям естественных алкалоидов, которые оказывают избирательное действие на соответствующие холинорецепторы. Мускариновые холинорецепторы, в свою очередь, могут быть м1-, м2- и м3-типа в зависимости от того, в каких органах или тканях они преобладают. Адренорецепторы, исходя из различной чувствительности их к химическим соединениям, подразделяют на альфа- и бета-адренорецепторы, которые тоже в зависимости от локализации имеют несколько разновидностей.

Сеть нервных волокон пронизывает все человеческое тело, таким образом, холино- и адренорецепторы расположены по всему телу. Нервный импульс, распространяющийся по всей нервной сети или ее пучку, воспринимается как сигнал к действию теми клетками, которые имеют соответствующие рецепторы. И, хотя
холинорецепторы локализуются в большей степени в мышцах внутренних органов (желудочно-кишечного тракта, мочеполовой системы, глаз, сердца, бронхиол и других органов), а адренорецепторы — в сердце, сосудах, бронхах, печени, почках и в жировых клетках , обнаружить их можно практически в каждом органе. Воздействия, при реализации которых они служат посредниками, очень разнообразны.

Зная механизм передачи информации в вегетативной нервной системе, можно предположить, как и в каких местах этой передачи нам необходимо действовать, чтобы вызвать определенные эффекты. Для этого мы можем использовать вещества, которые имитируют (миметики) или блокируют (литики) работу нейромедиаторов, угнетают действие ферментов, разрушающих эти медиаторы, или препятствуют высвобождению посредников из пресинаптических пузырьков. Используя такие лекарства, можно оказывать влияние на многие органы: регулировать деятельность сердечной мышцы, желудка, бронхов, стенок сосудов и так далее.

В ответ на раздражение нервная ткань приходит в состояние возбуждения, которое представляет собой нервный процесс, вызывающий или усиливающий деятельность органа. Свойство нервной ткани передавать возбуждение называется проводимостью. Скорость проведения возбуждения значительна: от 0,5 до 100 м/с, поэтому между органами и системами быстро устанавливается взаимодействие, отвечающее потребностям организма. Возбуждение проводится по нервным волокнам изолированно и не переходит с одного волокна на другое, чему препятствуют оболочки, покрывающие нервные волокна.

Клетки нейроглии в нервной системе подразделяются на два вида. Это глиоциты (или макроглия) и микроглия.

Среди глиоцитов различают эпендимоциты, астроциты и олигодендроциты.

Эпендимоциты образуют плотный слой, выстилающий центральный канал спинного мозга и все желудочки головного мозга. Они участвуют в образовании спинномозговой жидкости, транспортных процессах, в метаболизме мозга, выполняют опорную и разграничительную функции. Эти клетки имеют кубическую или призматическую форму, располагаются они в один слой. Их поверхность покрыта микроворсинками.
 (314x350, 23Kb)

Астроциты образуют опорный аппарат центральной нервной системы. Они представляют собой мелкие клетки с многочисленными, расходящимися во все стороны отростками. Различают волокнистые и протоплазматические астроциты. Волокнистые астроциты имеют 20-40 длинных, слабо ветвящихся отростков, преобладают в белом веществе центральной нервной системы. Отростки располагаются между нервными волокнами. Некоторые отростки достигают кровеносных капилляров.

 (285x175, 21Kb)

Протоплазматические астроциты располагаются преимущественно в сером веществе центральной нервной системы, имеют звездчатую форму, от их тел во все стороны отходят короткие сильно разветвленные, многочисленные отростки. Отростки астроцитов служат опорой для отростков нейронов, образуют сеть, в ячейках которой залегают нейроны. Отростки астроцитов, достигающие поверхности мозга, соединяются между собой и образуют на ней сплошную поверхностную пограничную мембрану.

 (470x334, 40Kb)

Олигодендриты — наиболее многочисленная группа клеток нейроглии. Они окружают тела нейронов в центральной и периферической нервной системе, находятся в составе оболочек нервных волокон и нервных окончаний.
 (180x160, 18Kb)

Олигодендроциты представляют собой мелкие овоидные клетки диаметром 6-8 мкм с крупным ядром. Клетки имеют небольшое количество отростков конусовидной и трапециевидной формы. Отростки образуют миелиновый слой нервных волокон. Миелинообразующие отростки спирально накручиваются на аксоны. По ходу аксона миелиновая оболочка сформирована отростками многих олигодендроцитов, каждый из которых образует один сегмент. Между сегментами находится лишенный миелина узловой перехват нервного волокна (перехват Ранвье). Олигодендроциты, образующие оболочки нервных волокон периферической нервной системы, называются нейролеммоцитами (шванновскими клетками).

Микроглия составляет около 5% клеток нейроглии в белом веществе мозга и 18% в сером веществе.
 (427x338, 6Kb)

Микроглия представлена мелкими удлиненными клетками угловатой или неправильной формы, рассеянными в белом и сером веществе (клетки Ортега). От тела каждой клетки отходят многочисленные отростки разной формы, напоминающие кустики, которые заканчиваются на кровеносных капиллярах. Ядра клеток имеют вытянутую или треугольную форму. Микроглиоциты обладают подвижностью и фагоцитарной способностью. Они выполняют функцию своеобразных «чистильщиков», поглощая частицы погибших клеток.

 (605x490, 65Kb)

Клетки нейроглии : 1 - протоплазматический астроцит, 2 - фиброзный астроцит, 3 - микроглия, 4 - олигодендроциты

На срезах ЦНС видны участки серого и белого цветов. Это серое и белое вещества мозга. Серое вещество образовано телами нейронов, безмякотными и тонкими мякотными волокнами, клетками глии и капиллярами: оно или в центре (в спинном мозге), или на поверхности в виде тонкой коры (cortex) больших полушарий и мозжечка, или в виде скоплений серого вещества — ядер (nucleus) в стволе мозга и его подкорковом отделе. Тела нейронов в сером веществе переплетены клеточными телами и отростками астроцитов и нейронов (дендритов и слабомиелинизированных аксонов), идущими к нейрону и от него. Такую густую сеть отростков называют нейропилем (от лат. pilos «войлок»).

Различают три типа организации нейронов в сером веществе: сетевидный, ядерный и корковый. Сетевидный тип характерен для строения ретикулярной формации (РФ) ЦНС. РФ — это центрально расположенный диффузный столб нейронов, тянущийся от верхних отделов спинного мозга до конца мозгового ствола. Нейроны РФ имеют длинные, прямые, слабоветвящиеся дендриты, а их аксоны рассеяны и не объединяются в пучки. Ядерному типу присущи густые скопления нейронов с густоветвящимися дендритами, аксоны же этих клеток объединяются в пучки. Корковый тип отличается послойным распределением нейронов, слоистостью (так организована кора больших полушарий и мозжечка).


с использованием материалов книги Григория Белоголовского «АНАТОМИЯ ЧЕЛОВЕКА»
Рубрики:  Анатомичка

Комментарии (0)

АНАТОМИЧКА, Neurology, Нервная система, ч.30

Дневник

Среда, 17 Декабря 2008 г. 20:44 + в цитатник
НЕРВНАЯ СИСТЕМА (Neurology )

Нервные волокна представляют собой отростки нервных клеток (дендриты, аксоны), покрытые оболочками. При этом отросток в каждом нервном волокне является осевым цилиндром, а окружающие его нейролеммоциты (шванновские клетки), относящиеся к нейроглии, образуют оболочку волокна — нейролемму. С учетом строения оболочек нервные волокна подразделяют на безмякотные (безмиелиновые) и мякотные (миелиновые).

Безмиелиновые нервные волокна имеются, главным образом, у вегетативных нейронов. Осевой цилиндр как бы прогибает плазматическую мембрану (оболочку) нейролеммоцита, которая смыкается над ним. Сдвоенная над осевым цилиндром мембрана нейролеммоцита получила название мезаксон. Под шванновской клеткой остается узкое пространство (10-15 нм), содержащее тканевую жидкость, участвующую в проведении нервных импульсов. Один нейролеммоцит окутывает несколько (до 5-20) аксонов нервных клеток. Оболочку отростка нервной клетки образуют многие шванновские клетки, располагающиеся последовательно одна за другой.

 (255x334, 10Kb)
Нервные волокна. А — миелиновое волокно. Б — безмиелиновое волокно.1 - осевой цилиндр; 2 - миелиновый слой; 3 - мезаксон; 4 - ядро нейролеммоцита (шванновской клетки); 5 - узловой перехват (перехват Ранвье).

Миелиновые нервные волокна толстые, они имеют толщину до 20 мкм. Эти волокна образованы довольно толстым аксоном клетки — осевым цилиндром. Вокруг аксона имеется оболочка, состоящая из двух слоев. Внутренний слой, миелиновый, образуется в результате спирального накручивания нейролеммоцита (шванновской клетки) на осевой цилиндр (аксон) нервной клетки. Цитоплазма нейролеммоцита выдавливается из него подобно тому, как это происходит при закручивании периферического конца тюбика с зубной пастой. Таким образом, миелин представляет собой многократно закрученный двойной слой плазматической мембраны (оболочки) нейролеммоцита. Толстая и плотная миелиновая оболочка, богатая жирами, изолирует нервное волокно и предотвращает утечку нервного импульса из аксолеммы (оболочки аксона).

Снаружи от миелинового находится тонкий слой, образованный самой цитоплазмой нейролеммоцитов. Дендриты миелиновой оболочки не имеют. Каждый нейролеммоцит (шванновская клетка) окутывает по длине только небольшой участок осевого цилиндра. Поэтому миелиновый слой не сплошной, прерывистый.

 (700x515, 92Kb)

Через каждые 0,3-1,5 мм имеются так называемые узловые перехваты нервного волокна (перехваты Ранвье), где миелиновый слой отсутствует. В этих местах соседние нейролеммоциты (шванновские клетки) своими концами подходят непосредственно к осевому цилиндру. Перехваты Ранвье способствует быстрому прохождению нервных импульсов по миелиновым нервным волокнам. Нервные импульсы по миелиновым волокнам проводятся как бы прыжками — от перехвата Ранвье к следующему перехвату.

 (600x300, 23Kb)

Скорость проведения нервных импульсов по безмиелиновым волокнам составляет 1-2 м/с, а по мякотным (миелиновым) — 5-120 м/с. По мере удаления от тела нейрона скорость проведения импульса уменьшается.

Периферическая нервная система представлена аксонами нервных клеток (осевыми цилиндрами), которые либо покрыты неврилеммой шванновских клеток (безмякотные волокна), либо между неврилеммой и осевым цилиндром имеется многослойная миэлиновая оболочка (мякотные волокна). Мякотные и безмякотные волокна объединяются в пучки, ограниченные трубчатой соединительно-тканной оболочкой - периневрием.

Внутри периневральной трубки каждое нервное волокно окружает рыхлая соединительная ткань Часто пучки переходят в более толстые образования — нервные стволы, в которых несколько пучков окружены рыхлой соединительной тканью — эпиневрием.

Нейроны соединяются между собой несколькими способами. Наиболее примитивным и древним является (эндоневрий). Пучки волокон, покрытые оболочкой, называют нервами.
протоплазматический способ, когда отросток одной нервной клетки переходит в отросток другой клетки. Если нервные клетки контактируют между собой немиэлинизированными участками сомы или отростков и появляется возможность электро-тонического взаимодействия, соединение называют эфаптическим. Третий способ соединения между нейронами, а также нейрона с клетками, не принадлежащими к нервной системе (мышечными, желудочными), — синаптический — наиболее сложный. Он предполагает наличие специального структурного образования — синапса.
 (470x264, 19Kb)

Синапсы. Нейроны нервной системы вступают в контакт друг с другом и образуют цепочки, по которым передается нервный импульс.

 (300x307, 19Kb)

Синапсами называют специализированные контакты между клетками, используемые для передачи сигналов. Синапс состоит из окончания пресинаптического нейрона, постсинаптической структуры и синаптической щели между ними. Пресинаптические терминали аксона расширяются, образуя концевую «пуговку» («бляшку»), окруженную аксолеммой. Ее участок, почти вплотную прилегающий к постсинаптической мембране другой клетки, называется пресинаптической мембраной. В цитоплазме синаптической бляшки много митохондрий и синаптических пузырьков (везикул) диаметром 40-50 нм.

 (400x345, 13Kb)

Ширина синаптической щели в химических синапсах — 20-30 нм, а в электрических — 2-4 нм. Синапсы классифицируют по их расположению на поверхности постсинаптического нейрона. Если аксон оканчивается на дендрите другого нейрона, это аксо-дендритный синапс (часто синаптическая бляшка как бы «надевается» на специальные выступы — дендритные шипики), если же на соме другого нейрона, это аксо-соматический синапс (около половины поверхности сомы и почти вся поверхность дендритов может быть усеяна контактами от других нейронов).

Аксон образует иногда синапсы в своей проксимальной части, лишенной миэлина, либо на синаптической бляшке другого нейрона. Такие синапсы являются аксо-аксонными. Реже встречаются синапсы между дендритами (дендро-дендритные) и между дендритными шипиками и телом другого нейрона (дендро-соматические). В окончаниях периферических нервов на мышцах имеются нервно-мышечные (мионевральные) синапсы, на железах — нейросекреторные, а на внутренних органах — органные синапсы. Аксо-васкулярные синапсы наблюдают между нейросекреторными клетками гипоталамуса и стенками капилляров.

Синапсы можно классифицировать, во-первых, по их местоположению и принадлежности соответствующим клеткам (нервно-мышечные, нейро-нейрональные, аксо-соматические, аксо-дендритические и т.д.).

Во-вторых, синапсы можно разделить по знаку их действия на возбуждающие и тормозящие.

И, наконец, по способу передачи сигналов они разделяются на электрические, в которых сигналы передаются электрическим током, и химические, в которых передатчиком сигнала (трансмиттер) или иначе посредником (медиатор) является то или иное физиологически активное вещество. Существуют и смешанные — электрохимические синапсы. Заметим, что и в том, и в другом синапсе имеются такие компоненты, как пресинаптическая мембрана, постсинаптическая мембрана и разделяющая их синаптическая щель.

В мозге редко встречаются изолированные одиночные синапсы. Обычно несколько синапсов вместе складываются в тот или иной тип групповой синаптической связи. Простейший из таких типов — когда два или несколько синапсов расположены рядом друг с другом и ориентированы в одном направлении; все они бывают аксо-дендритными. Более сложен тип - аксо-аксодендритные, реципрокные и аксо-дендродендритные последовательности,. Если два таких синапса расположены рядом, то их называют реципрокной парой. Если же два синапса удалены один от другого, то возникает реципрокное устройство. Наконец, есть такие типы синаптических соединений, когда тесно сближена целая группа терминалей. Этот тип называют синаптической гломерулой.

Передача информации в синапсе осуществляется специальными химическими веществами-посредниками (медиаторами), выделяемыми из нервных окончаний в синаптическую щель. В нервной системе эти вещества называют нейромедиаторами. Основными нейромедиаторами в вегетативной нервной системе являются ацетилхолин и норадреналин. В состоянии покоя эти медиаторы, вырабатываемые в нервных окончаниях, находятся в особых пузырьках.

Работа медиаторов: процесс передачи информации можно разбить на четыре этапа. Как только по пресинаптическому окончанию поступает импульс, на внутренней стороне клеточной мембраны за счет входа ионов натрия происходит образование положительного заряда, и пузырьки с медиатором начинают приближаться к пресинаптической мембране (этап I).

На втором этапе осуществляется выход медиатора в синаптическую щель из пузырьков в месте их контакта с пресинаптической мембраной. После выделения из нервных окончаний нейромедиатор проходит синаптическую щель путем диффузии и связывается со своими рецепторами постсинаптической мембраны клетки исполнительного органа или другой нервной клетки (этап III).

Активация рецепторов запускает в клетке биохимические процессы, приводящие к изменению ее функционального состояния в соответствии с тем, какой сигнал был получен от афферентных звеньев. На уровне органов это проявляется сокращением или расслаблением гладких мышц (сужением или расширением сосудов, учащением или замедлением и усилением или ослаблением сокращений сердца), выделением секрета и так далее.

И, наконец, на четвертом этапе происходит возвращение синапса в состояние покоя либо за счет разрушения медиатора ферментами в синаптической щели, либо благодаря транспорту его обратно в пресинаптическое окончание. Сигналом к прекращению выделения медиатора служит возбуждение им рецепторов пресинаптической мембраны.

 (350x453, 12Kb)

Функционирование синапса: I – поступление нервного импульса; II – выделение медиатора в синаптическую щель; III – взаимодействие с рецептором постсинаптической мембраны; IV – «судьба» медиатора в синаптической щели – возвращение синапса в состояние покоя. 1 – обратный захват медиатора; 2 – разрушение медиатора ферментом; 3 – возбуждение пресинаптических рецепторов.


с использованием материалов книги Григория Белоголовского «АНАТОМИЯ ЧЕЛОВЕКА» и материалов сайта http://www.rlsnet.ru/book_RlsPatient2003.htm?PartId=34
Рубрики:  Анатомичка

Комментарии (0)

АНАТОМИЧКА, Neurology, Нервная система, ч.29

Дневник

Вторник, 16 Декабря 2008 г. 22:40 + в цитатник
НЕРВНАЯ СИСТЕМА (Neurology )

Нервная система человека подразделяется на центральную (головной и спинной мозг) и периферическую (нервные корешки, узлы, сплетения, черепные и спинномозговые нервы).

 (400x536, 36Kb)

Нервная система человека играет главную роль в согласованной деятельности организма. Особый комплекс периферических нервов и нервных узлов, иннервирующих сердце, легкие, пищеварительный тракт и другие внутренние органы, сосуды и ткани - есть вегетативная нервная система. В норме мы не ощущаем раздражения вегетативных узлов и нервов.

Нервные узлы симпатического отдела вегетативной нервной системы образуют симпатические нервные стволы, расположенные около спинного мозга, а нервные узлы парасимпатического отдела лежат во внутренних органах или около них.

Мышцы и железы животного или человека носят общее название эффекторов ; глаза, уши и другие органы чувств называются рецепторами.Нервная система, состоящая из головного мозга, спинного мозга и проводящих путей, соединяет рецепторы с эффекторами и передает импульсы, или «сообщения», от первых ко вторым. Она способна делать это таким образом, что при раздражении того или иного рецептора должным образом реагирует надлежащий эффектор.

Основными функциями нервной системы являются проведение импульсов и интеграция деятельности различных систем организма. Координирующие функции нервной системы, эндокринная регуляция и собственные регуляторные механизмы внутриклеточных ферментных систем (торможение и стимуляция активности ферментов, индукция и репрессия их синтеза) — все это факторы, способствующие гомеостазу, т.е. поддержанию постоянства внутренней среды организма.


Центральная нервная система (ЦНС) — это совокупность нервных образований спинного и головного мозга , обеспечивающих восприятие, обработку, передачу, хранение и воспроизведение информации с целью адекватного взаимодействия организма и изменений окружающей среды, координации оптимальной работы органов, их систем и организма в целом.

 (267x454, 64Kb)

Каждая из этих структур имеет морфологическую и функциональную специфику. Но, наряду с этим, у всех структур нервной системы есть ряд общих свойств и функций , к которым относятся: нейронное строение, электрическая и химическая синаптическая связь между нейронами, образование локальных сетей из нейронов, реализующих специфическую функцию, множественность прямых и обратных связей между структурами, способность нейронов всех структур к восприятию, обработке, передаче и хранению информации, преобладание числа входов для ввода информации над числом выходов, способность к параллельной обработке информации, способность к саморегуляции, функционирование на основе рефлекторного доминантного принципа.

Головной мозг является важнейшим отделом ЦНС, в нем различают стволовую часть и конечный мозг, включающего подкорковые или базальные ганглии и большие полушария.

Продолговатый мозг, мост, средний мозг, промежуточный мозг и мозжечок относятся к стволу мозга. В филогенетическом отношении это наиболее древние нервные структуры и поэтому их функции тесно связаны с регуляцией примитивных функциональных процессов.

Большие полушария осуществляют регуляцию высших нервных функций, лежащих в основе всех психических процессов человека. Правое и левое полушарие тесно связаны между собой с помощью огромного количества нервных волокон, образующих мозолистое тело.

Многие нервные процессы, выходящие из какой-либо точки одного полушария, проецируются в симметричную точку другого полушария. Таким образом, в нервной деятельности полушарий конечного мозга проявляется свойство билатеральной симметрии.

Темпы созревания левого и правого полушарий имеют половые особенности. Левое полушарие у девочек развивается быстрее, что свидетельствует о более раннем созревании доминантного полушария. Данный факт косвенно подтверждается также более быстрым развитием у девочек речи и некоторых показателей психомоторики.

Высшим центром регуляции и управления всей деятельностью организма, начиная от самых примитивных физиологических отправлений и кончая сложнейшими психическими процессами у человека, является кора головного мозга.

Нервная тканьсостоит из двух разновидностей клеток: нервных (нейронов) и глиальных. Глиальные клетки вплотную прилегают к нейрону, выполняя опорную, питательную, секреторную и защитную функции.

 (331x674, 49Kb)

Вся нервная система построена на нервной ткани. Нервная ткань состоит из нервных клеток (нейронов) и связанных с ними анатомически и функционально вспомогательных клеток нейроглии. Нейроны выполняют специфические функции, являясь структурно-функциональной единицей нервной системы. Нейроглия обеспечивает существование и специфические функции нейронов, выполняет опорную, трофическую (питательную), разграничительную и защитную функции.

 (460x314, 32Kb)

Нейрон (нейроцит) получает, перерабатывает, проводит и передает информацию, закодированную в виде электрических или химических сигналов (нервных импульсов).

 (246x413, 9Kb)

Каждый нейрон имеет тело, отростки и их окончания. Снаружи нервная клетка окружена оболочкой (цитолеммой), способной проводить возбуждение, а также обеспечивать обмен веществ между клеткой и окружающей их средой. Тело нервной клетки содержит ядро и окружающую его цитоплазму (перикарион). Цитоплазма нейронов богата органеллами (субклеточными образованиями, выполняющими ту или иную функцию).

Диаметр тел нейронов варьирует от 4-5 до 135 мкм. Форма тел нервных клеток тоже различная — от округлой, овоидной до пирамидальной. От тела нервной клетки отходят различной длины тонкие отростки двух типов. Один или несколько древовидно ветвящихся отростков, по которым нервный импульс приносится к телу нейрона, называют дендритом. У большинства клеток их длина составляет около 0,2 мкм. Единственный, обычно длинный отросток, по которому нервный импульс направляется от тела нервной клетки — это аксон, или нейрит.

По количеству отростков нейроны подразделяются на униполярные, би- и мультиполярные клетки. Униполярные (одноотростчатые) нейроны имеют лишь один отросток. У человека такие нейроны встречаются лишь на ранних стадиях внутриутробного развития. Биполярные (двухотростчатые) нейроны имеют один аксон и один дендрит. Их разновидностью являются псевдоуниполярные (ложноуниполярные) нейроны. Аксон и дендрит этих клеток начинаются от общего выроста тела и в последущем Т-образно делятся. Мультиполярные (многоотросчатые) нейроны имеют один аксон и много дендритов, они составляют большинство в нервной системе человека. Нервные клетки динамически поляризованы, т.е. способны проводить нервный импульс только в одном направлении — от дендритов к аксону.

В зависимости от функции нервные клетки подразделяют на чувствительные, вставочные и эффекторные.

Чувствительные (рецепторные, афферентные) нейроны. Эти нейроны своими окончаниями воспринимают различные виды раздражений. Возникшие в нервных окончаниях (рецепторах) импульсы по дендритам проводятся к телу нейрона, которое находится всегда вне головного и спинного мозга, располагаясь в узлах (ганглиях) периферической нервной системы. Затем по аксону нервный импульс направляется в центральную нервную систему, в спинной или в головной мозг. Поэтому чувствительные нейроны называют также приносящими (афферентными) нервными клетками.

 (578x400, 34Kb)

Нервные окончания (рецепторы) различаются по своему строению, расположению и функциям. Выделяют экстеро-, интеро- и проприо-рецепторы. Экстерорецепторы воспринимают раздражение из внешней среды. Эти рецепторы находятся в наружных покровах тела (коже, слизистых оболочках), в органах чувств. Интерорецепторы получают раздражение в основном при изменении химического состава внутренней среды организма (хеморецепторы), давления в тканях и органах (барорецепторы).

 (406x452, 30Kb)

Проприорецепторы воспринимают раздражение (натяжение, напряжение) в мышцах, сухожилиях, связках, фасциях и суставных капсулах. В соответствии с функцией выделяют терморецепторы , которые воспринимают изменения температуры, и механорецепторы , улавливающие различные виды механических воздействий (прикосновение к коже, ее сдавление). Ноцирецепторы воспринимают болевые раздражения.

Вставочные (ассоциативные, кондукторные) нейроны составляют до 97% нервных клеток нервной системы. Эти нейроны находятся, как правило, в пределах центральной нервной системы (головного и спинного мозга). Они передают полученный от чувствительного нейрона импульс эффекторному нейрону.

Эффекторные (выносящие или эфферентные) нейроны проводят нервные импульсы от мозга к рабочему органу — мышцам, железам и другим органам. Тела этих нейронов располагаются в головном и спинном мозге, в симпатических или парасимпатических узлах на периферии.

 (350x349, 10Kb)

с использованием материалов книги Григория Белоголовского «АНАТОМИЯ ЧЕЛОВЕКА»
Рубрики:  Анатомичка

Комментарии (0)

АНАТОМИЧКА, Splanchnoligia: Мужские половые органы, ч.28.

Дневник

Пятница, 12 Декабря 2008 г. 16:50 + в цитатник
МУЖСКИЕ ПОЛОВЫЕ ОРГАНЫ (organa genitalia masculine)

 (368x465, 26Kb)

В состав мужских половых органов, входят: яички с их оболочками, семявыносящие протоки с семенными пузырьками, предстательная железа, бульбоуретральные железы, половой член, состоящий из пещеристых тел. Здесь также будет описан и мужской мочеиспускательный канал, носящий смешанный характер мочеполовой трубки.

 (300x384, 24Kb)

Мужские половые органы (organa genitalia masculine). Вид слева. Левые отделы стенок таза и левая стенка мошонки удалены: 1-мыс крестца; 2-прямая кишка (покрыта брюшиной); 3-мочеточник (левый); 4-прямокишечно-мочепузырная складка (правая); 5-прямокишечно-мочепузырное углубление; 6-прямая кишка (обнажена мышечная оболочка); 7-семенной пузырек (левый); 8-предстательная железа; 9-мышца, поднимающая задний проход; 10-наружный сфинктер заднего прохода; 11-яичко; 12-мошонка; 13-серозная (влагалищная) оболочка яичка; 14-придаток яичка; 15-крайняя плоть (полового члена); 16-головка полового члена; 17-венец головки; 18-семявыносящий проток; 19-внутренняя семенная фасция. 20-пещеристое тело полового члена; 21-губчатое тело половою члена; 22-семенной канатик; 23-луковица полового члена; 24-седалищно-пешеристая мышца; 25-перепончатая часть мужского мочеиспускательного канала (мужской уретры); 26-связка, поддерживашая половой член; 27-лобковая кость: 28-подкожная клетчатка; 29-семявыносящий проток; 30-мочевой пузырь (мышечная оболочка); 31-брюшина; 32-мочевой пузырь; покрытый брюшиной; 33-наружные подвздошные артерия и вена; 34-левая общая подвздошная вена; 35-правая общая подвздошная артерия; 36-нижняя полая вена; 37-аорта.

ЯИЧКИ. СТРОЕНИЕ ЯИЧЕК.

Яички, testes (греч. — orchis s. didymis), представляют пару овальной формы несколько сплющенных с боков тел, расположенных в мошонке. Длинник яичка равен в среднем 4 см, поперечник — 3 см, масса от 15 до 25 г. В яичке различают две поверхности — facies medialis и lateralis, два края — margo anterior и posterior и два конца — extremitas superior и inferior.

При нормальном положении яичка в мошонке верхний конец его обращен вверх, кпереди и латерально, вследствие чего и нижний конец обращен не только книзу, но также кзади и медиально. Левое яичко обычно опущено несколько ниже, чем правое. К заднему краю яичка подходят семенной канатик, funiculus spermaticus, и придаток яичка, epididymis; последний располагается вдоль заднего края. Epididymis представляет собой узкое длинное тело, в котором различают верхнюю, несколько утолщенную часть — головку придатка, caput epididymitis, и нижний, более заостренный конец, cauda epididymidis; промежуточный участок составляет тело, corpus epididymidis. В области тела между передней вогнутой поверхностью придатка и яичком имеется пазуха, sinus epididymidis, выстланная серозной оболочкой и открытая в латеральную сторону.

На верхнем конце яичка нередко находится маленький отросток — appendix testis; на разрезе он состоит из тонких канальцев; представляет, по-видимому, рудиментарный остаюк ductus paramesonephricus. На головке придатка встречается appendix epididymidis, сидящий обычно на ножке (остаток mesonephros).

Строение яичка.

Яичко окружено плотной фиброзной оболочкой беловатой окраски, tunica albuginea, лежащей непосредственно на веществе или паренхиме яичка, parenchyma testis.

 (180x241, 7Kb)
Яичко (testis) и придаток яичка (epididy-mus) Латеральная сторона. Оболочки яичка вскрыты: 1-семенной канатик; 2-головка придатка яичка; 3-принесок придатка яичка; 4-верхняя связка придатка яичка; 5-привесок яичка; 6-яичко; 7-влагалищная оболочка яичка; 8-нижняя связка придатка яичка; 9-хвост придатка яичка; 10-пазуха придатка яичка; 11-тело придатка яичка; 12-внутренняя семенная фасция.

По заднему краю фиброзная ткань оболочки вдается на короткое расстояние внутрь железистой ткани яичка в виде неполной вертикальной перегородки или утолщения, носящего название mediastinum testis; от mediastinum лучеобразно отходят фиброзные перегородки — septula testis, которые своими наружными концами прикрепляются к внутренней поверхности tunica albuginea и, таким образом, делят всю паренхиму яичка на дольки, lobuli testis. Число долек яичка доходит до 250 —300. Вершины долек обращены к mediastinum, а основания — к tunica albuginea. Придаток яичка также имеет tunica albuginea, но более тонкую.

 (550x398, 102Kb)
Паренхима яичка состоит из семенных канальцев, в которых различают два отдела — tubuli seminiferi contorti и tubuli seminiferi recti. В каждой дольке имеется 2 — 3 канальца и более. Имея извилистое направление в самой дольке, семенные канальцы, tubuli seminiferi contorti, приближаясь к mediastinum, соединяются друг с другом и непосредственно у mediastinum суживаются в короткие прямые трубки, tubuli seminiferi recti. Прямые канальцы открываются в сеть ходов — rete testis, расположенную в толще mediastinum. Из сети яичка открываются 12—15 выносящих канальцев — ductuli efferentes testis, которые направляются к головке придатка.

По выходе из яичка выносящие канальцы становятся извилистыми и образуют ряд конических долек придатка, lobuli s. coni epididymidis. Ductuli efferentes открываются в одиночный канал придатка, ductus epididymidis, который, образуя многочисленные изгибы, продолжается в ductus deferens. Будучи расправлен, канал придатка достигает 3 —4 м. Ductuli efferentes, lobuli epididymidis и начальный отдел канала придатка образуют в совокупности головку придатка. На придатке яичка встречаются отклоняющиеся протоки, ductuli aberrdntes. Тотчас выше головки придатка, кпереди от семенного канатика, встречается небольшое тело, paradidymis, которое представляет рудиментарный остаток первичной почки.

Местом образования спермиев, spermium, — основной части мужского семени являются лишь tubuli seminiferi contorti. Tubuli recti и канальцы сети яичка принадлежат уже к выводящим путям.

Жидкая составная часть семени — sperma — только в незначительном количестве продуцируется яичками. Она представляет собой главным образом продукт выделения придаточных желез полового аппарата, открывающихся в выводящие пути.

Семявыносящий проток, ductus deferens

Семявыносящий проток, ductus deferens, парный, будучи непосредственным продолжением канала придатка, отличается от последнего большей толщиной своих сгенок. Отделенный от яичка сосудами (а. и v. testiculares), поднимается кверху и входит в состав семенного канатика. В последнем он располагается позади сосудов и легко прощупывается благодаря плотной консистенции своих стенок.

В составе семенного канатика он поднимается вертикально вверх к поверхностному паховому кольцу. Пройдя в паховом канале косо вверх и латерально, он у глубокого пахового кольца оставляет vasa testiculares (последние направляются в поясничную область) и идет вниз и назад по боковой стенке таза, будучи прикрыт брюшиной. Достигнув мочевого пузыря, проток загибается ко дну мочевого пузыря и подходит к предстательной железе. В нижнем своем отделе он заметно расширяется в виде ампулы семявыносящего протока, ampulla ductus deferentis.

Длина ductus deferens равняется 40 — 45 см. Средний диаметр 2,5 мм, ширина его просвета всего 0,2 — 0,5 мм. Стенка ductus deferens состоит из трех слоев: наружной фиброзной оболочки, tunica adventitia, затем средней мышечной, tunica muscularis, и внутренней слизистой, tunica mucosa.

Семенные пузырьки, vesiculae seminales.

Семенные пузырьки, vesiculae seminales, лежат латерально от семявыносящих протоков, между дном мочевого пузыря и прямой кишкой. Каждый семенной пузырек представляет собой сильно извитую трубку, имеющую в расправленном виде длину до 12 см, в нерасправленном — 5 см.

Нижний заостренный конец семенного пузырька переходит в узкий выделительный проток, ductus excretorius, который соединяется под острым углом с ductus deferens той же стороны, образуя вместе с ним семявыбрасывающий проток, ductus ejaculatorius. Последний представляет собой тоненький каналец, который, начавшись от места слияния ductus deferens и ductus excretorius, проходит через тощу предстательной железы и открывается в предстательную часть мочеиспускательного канала узким отверстием у основания семенного бугорка.

Длина семявыбрасывающего протока около 2 см. Стенки семенных пузырьков состоят из тех же слоев, что и ductus deferens. Семенные пузырьки представляют собой секреторные органы, которые вырабатывают жидкую часть семени.

Оболочки яичка и семенного канатика.

 (180x245, 8Kb)

B]Яичко (testis) и придаток яичка (epididy-mus) на продольном разрезе[/B] 1-семенной канатик; 2-лозовидное сплетение 11 (венозное); 3-серозная 10 полость; 4-средостение яичка; 5-внутренняя семенная фасция; 6-влагалищная оболочка яичка; 7-дольки яичка; 8-белочная оболочка яичка; 9-перегородочки яичка; 10-пазуха придатка яичка; 11-головка придатка яичка.

Оболочки яичка и семенного канатика, считая снаружи, следующие: кожа, tunica dartos, fascia spermatica externa, fascia cremasterica, m. cremaster, fascia spermatica interna, tunica vaginalis testis. Такое большое число оболочек яичка соответствует определенным слоям передней брюшной стенки. Яичко при своем смещении из брюшной полости как бы увлекает за собой брюшину и фасции мышц живота и оказывается окутанным ими.

[1. Кожа мошонки тонкая и имеет более темную окраску по сравнению с другими участками тела. Она снабжена многочисленными крупными сальными железами, секрет которых имеет особый характерный запах.

2. Tunica dartos, мясистая оболочка, расположена тотчас под кожей. Она представляет собой продолжение подкожной соединительной ткани из паховой области и промежности, но лишена жира. В ней находится значительное количество гладкой мышечной ткани. Tunica dartos образует для каждого яичка по одному отдельному мешку, соединенному друг с другом по средней линии, так что получается перегородка, septum scroti, прикрепляющаяся по линии raphe.

3. Fascia spermatica externa — продолжение поверхностной фасции живота.

4. Fascia cremasterica представляет собой продолжение fascia intercruralis, отходящей от краев поверхностного пахового кольца; она покрывает m. cremaster, а поэтому и называется fascia cremasterica.

5. М. cremaster состоит из пучков исчерченных мышечных волокон, являющихся продолженем m. transversus abdominis (см. «Миология»). При сокращении т. cremaster яичко подтягивается кверху.

6. Fascia spermatica interna, внутренняя семенная фасция, расположена тотчас под m. cremaster. Она представляет собой продолжение fascia transversalis, охватывает кругом все составные части семенного канатика и в области яичка прилежит к наружной поверхности его серозного покрова.

7. Tunica vaginalis testis, влагалищная оболочка яичка, происходит за счет processus vaginalis брюшины и образует замкнутый серозный мешок, состоящий из двух пластинок: lamina parietalis — пристеночная пластинка и lamina visceralis — висцеральная пластинка. Висцеральная пластинка тесно срастается с белочной оболочкой яичка и переходит также на придаток. Между латеральной поверхностью яичка и средней частью придатка (телом) висцеральная пластинка заходит в щеле-видное пространство между ними, образуя sinus epididymidis.

Вдоль заднего края яичка по месту выхода сосудов висцеральная пластинка переходит в париетальную. Между обращенными друг к другу поверхностями париетальной и висцеральной пластинок имеется щелевидное-пространство — cavum vaginale, в котором в патологических случаях может скопиться большое количество серозной жидкости и обусловить водянку яичка.

Половой член, penis.

Половой член, penis, составляет вместе с мошонкой наружные половые органы. В его состав входят три тела: парное пещеристое, corpus cavernosum penis, и непарное губчатое, corpus spongiosum penis. Название этих тел обусловлено тем, что они состоят из многочисленных перекладин, фиброзно-эластических тяжей с примесью неисчерченных мышечных волокон, среди густого сплетения которых есть промежутки, пещеры, выстланные эндотелием и заполненные кровью.

 (180x512, 14Kb)
Мужские половые органы (organa genitalia masculine). Предстательная желе:и (prostata), пешеристые тела (corpora cav-crnosa), губчатое тело (corpus spongiosus) полового члена, бульооуретральные железы (glandulae hulbouretralis) Мочевой пузырь и мочеиспускательный канал вскрыты: 1-мочевой пузырь; 2-мочеточник; 3-треугольник мочевого пузыря; 4-язычок пузыря; 5-внутреннее отверстие мочеиспускательного канала; 6-предстательная железа; 7-предстательная часть (мочеиспускательного канала); 8-перепончатая часть (мочеиспускательного канала); 9-бульбоуретральная железа; 10-луковица полового члена; 11-пешеристое тело полового члена; 13-лакуны мочеиспускательного канала; 14-головка полового члена; 15-крайняя плоть; 16-наружное отверстие мочеиспускательного канала; 17-ладьевидная ямка мочеиспускательного канала; 18-губчатое тело полового члена; 19-протоки бульбоуретральных желез; 20-семенной холмик; 21-отверстие правого мочеточника; 22-складки слизистой оболочки мочевого пузыря.

Corpora cavernosa penis представляет собой два длинных цилиндрических тела с заостренными концами, из которых задние расходятся и образуют crura penis, прикрепляющиеся к нижним ветвям лобковых костей. Эти два тела покрыты общей белочной оболочкой, tunica albuginea corporum cavernosorum, которая в промежутке между ними образует septum penis. Соответственно перегородке на верхней поверхности находится борозда для v. dorsalis penis, а на нижней поверхности — для corpus spongiosum penis.

Corpus spongiosum penis, покрытое tunica albuginea corporis spongiosi, лежит снизу пещеристых тел члена и пронизано во всю длину мочеиспускательным каналом. Оно имеет меньший, чем два других пещеристых тела, диаметр (1 см), но в отличие от них утолщается на обоих концах, образуя спереди головку члена, glans penis, а сзади луковицу — bulbus penis.

Задняя часть полового члена, прикрепленная к лобковым костям, носит название корня, radix penis. Кпереди половой член оканчивается головкой, glans penis. Промежуточная между головкой и корнем часть называется телом, corpus penis. Верхняя поверхность тела шире нижней и носит название спинки, dorsum penis. К нижней поверхности прилежит corpus spongiosum penis. На головке члена имеется вертикальная щель — наружное отверстие мочеиспускательного канала, ostium urethrae externum; головка с дорсальной и с латеральной сторон несколько выдается над уровнем пещеристых тел; этот край головки носит название corona glandis, а сужение позади него — collum gldndis.

 (300x505, 20Kb)
Пещеристые и губчатое тела (corpora cavernosa et corpu spongiosus) полового члена Губчатое тело частично отделено от пещеристых тел: 1-наружное отверстие мочеиспускательного канала; 2-головка полового члена; 3-венец головки; 4-губчатое тело полового члена; 5-луковично-пешеристая мышца; 6-луковица полового члена; 7-бульбоуретральная железа; 8-седалишный бугор; 9-глубокая поперечная мышца промежности;10-нижняя фасция мочеполовой диафрагмы; 11-наружная мышца, сжимающая мочеиспускательный канал (наружный сфинктер мочеиспускательного канала); 12-ножка полового члена; 13-седалищно-пещеристая мышца; 14-глубокая фасция полового члена; 15-пещеристые тела полового члена.

Кожа полового члена у основания головки образует свободную складку, которая носит название крайней плоти, preputium. На нижней стороне головки члена крайняя плоть соединена с кожей головки уздечкой, frenulum preputii. Вокруг corona glandis и на внутреннем Листке крайней плоти расположены различной величины сальные железки, glandulae preputiales. Секрет этих желез входит в состав препуциальной смазки, smegma preputii, собирающейся в желобе между glans penis и preputium. Между головкой и крайней плотью остается пространство — полость крайней плоти, открывающееся спереди отверстием, которое пропускает головку при отодвигании крайней плоти кзади. На нижней поверхности члена, по средней линии от frenulum preputii, внизу заметен шов, raphe, указывающий место сращения первоначально двух отдельных половин. С полового члена шов простирается кзади на мошонку и промежность. Три тела полового члена соединяются в одно целое окружающей их fascia penis, лежащей под рыхлой подкожной клетчаткой. Кроме того, корень члена укрепляется связками.

Величина penis изменяется в зависимости от количества крови в камерах пещеристых и губчатого тел. Кровь приносится к половому члену через аа. profundae et dorsalis penis. Артериальные ветви, проходя в соединительнотканных перегородках, распадаются на тонкие завитковые артерии, которые открываются прямо в кавернозные пространства. Отводящие кровь вены, venae cavernosae, начинаются частью в центральных участках пещеристых тел, частью более периферически и вливаются в vv. profundae penis и в v. dorsalis penis. Благодаря особому устройству кровеносных сосудов члена кровь в пещеристых телах может задерживаться, что приводит к их уплотнению при эрекции.
 (322x450, 38Kb)

Сосуды ( кровоснабжение ) полового члена. Нервы ( иннервация ) полового члена.

 (550x448, 191Kb)
Сосуды и нервы: артерии полового члена являются ветвями a. femoralis (аа. pudendae externae) и a. pudenda interna. Венозный отток происходит по vv. dorsales penis superficialis et profundae в v. femoralis и в plexus venosus vesicalis. Лимфоотток осуществляется в nodi lymphatici inguinales и узлы полости малого таза.
Кроме анатомического деления мочеиспускательного канала на 3 части, в урологической клинике (соответственно течению воспалительных процессов) различают 2 отдела его: переднюю уретру, т.е. pars spongiosa, и заднюю — остальные две части. Границей между ними служит m. sphincter urethrae, который препятствует проникновению инфекции из передней уретры в заднюю.

На всем протяжении слизистой оболочки, за исключением ближайшего к наружному отверстию участка, в канал открываются многочисленные железки — glandulae urethrales. Кроме того, преимущественно на верхней стенке мочеиспускательного канала, в особенности кпереди от луковицы, находятся углубления — lacunae urethrales; отверстия их обращены кпереди и прикрыты клапанообразными заслонками. Кнаружи от под-слизистой основы располагается слой неисчерченных мышечных волокон (изнутри продольные, снаружи циркулярные).

 (400x288, 97Kb)

Мочеиспускательный канал на своем пути имеет S-образную изогнутость. При поднимании кверху pars spongiosa передняя кривизна выпрямляется и остается один изгиб с вогнутостью, обращенной к symphysis pubica. Большая фиксированность задней кривизны обеспечивается ligg. puboprosta-tica, идущими от симфиза к предстательной железе, diaphragma urogenitale (через нее проходит pars membranacea urethrae), а также lig. suspen-sorium penis, соединияющей penis с симфизом.

Калибр просвета мочеиспускательного канала не везде одинаков. Измерение металлических слепков дало такие цифры: место соединения pars spongiosa и pars membranacea — 4,5 мм, наружное отверстие — 5,7 мм, середина pars prostatica — 11,3 мм, в области bulbus — 16,8 мм. Возможно, что семя перед выбрасыванием предварительно собирается в расширенной соответственно bulbus части канала. У взрослого можно считать максимальным для введения в канал катетер диаметром 10 мм.

Афферентная иннервация проводится по n. pudendus, эфферентная симпатическая — из plexus hypogastrics inferior, парасимпатическая — nn. erigentes.


 (300x217, 9Kb)
Пещеристые и губчатое тела (corpora cavernosa et corpi spongiosus) полового члена и мужской мочеиспускательный канал (urethra masculina) на поперечном разрезе 1-пещеристые тела; 2-глубокая артерия полового члена; 3-перегородка полового члена;

1. Pars prostatica, предстательная часть, ближайшая к мочевому пузырю, проходит через предстательную железу. Длина этого отдела около 2,5 см. Предстательная часть, особенно ее средний отдел, является наиболее широким и растяжимым участком мочеиспускательного канала. На задней стенке находится небольшое срединное возвышение — colliculus seminalis, семенной бугорок около 1,5 см длиной. На верхушке семенного бугорка щелевидное отверстие ведет в небольшой слепой кармашек, расположенный в толще предстательной железы, который носит название utriculus prostaticus (предстательная маточка). Название указывает на происхождение этого образования из слившихся нижних концов ductus paramesonephricus, из которых у женщины развиваются матка и влагалище. По сторонам от входа в utriculus prostaticus находятся на colliculus seminalis маленькие отверстия семявыбрасывающих протоков (по одному справа и слева).

Латерально от семенного бугорка по обеим сторонам открываются многочисленные отверстия простатических железок. По окружности предстательной части мочеиспускательного канала имеется, кольцо мышечных волокон, составляющих часть гладкой мышечной ткани предстательной железы, усиливающих сфинктер мочевого пузыря, sphincter vesicae (гладкомышечный, непроизвольный).

2. Pars membranacea, перепончатая часть , представляет собой участок мочеиспускательного канала на протяжении от верхушки предстательной железы до bulbus penis; длина ее около 1 см. Таким образом, этот отдел канала является наиболее коротким и в то же время наиболее узким из всех трех. Он лежит кзади и книзу от lig. arcuatum pubis, прободая на своем пути diaphragma urogenitale с ее верхней и нижней фасциями; нижний конец перепончатой части на месте прободения нижней фасции представляет собой самый узкий и наименее растяжимый участок канала, что необходимо учитывать при введении катетера, чтобы не прорвать канал. Перепончатая часть мочеиспускательного канала окружена мышечными пучками произвольного сфинктера, m. sphincter utethrae.

3. Pars spongiosa, губчатая часть, длиной около 15 см, окружена тканью corpus spongiosum penis. Часть канала соответственно bulbus несколько расширена; на остальном протяжении до головки диаметр канала равномерный, в головке на протяжении приблизительно 1 см канал опять расширяется, образуя ладьевидную ямку, fossa naviculdris urethrae. Наружное отверстие является малорастяжимой частью мочеиспускательного канала, что следует учитывать при вставлении зонда.

Мужской мочеиспускательный канал.

Мужской мочеиспускательный канал, urethra masculina, представляет трубку около 18 см длиной, простирающуюся от мочевого пузыря до наружного отверстия мочеиспускательного канала, ostium urethrae externum, на головке полового члена. Urethra служит не только для выведения мочи, но также для прохождения семени, которое поступает в мочеиспускательный канал через ductus ejaculatorius. Мочеиспускательный канал проходит через различные образования, поэтому в нем различают три части: pars prostatica, pars membranacea и pars spongiosa.

Сосуды ( кровоснабжение ) и нервы ( иннервация ) мочеиспускательного канала. Акт мочеиспускания.

Артерии мочеиспускательного канала происходит из ветвей a. pudenda interna. Разные отделы канала питаются из различных источников: pars prostatica — из ветвей а. гесtalis media и a. vesicalis inferior; pars membranacea — из a. rectalis inferior и a. perinealis; pars spongiosa — из a. pudenda interna. В васкуляризации стенок канала участвуют также a. dorsalis penis и a. profunda penis. Венозная кровь оттекает к венам penis и к венам мочевого пузыря. Лимфоотток происходит из pars prostatica к лимфатическим сосудам prostatae, из pars membranacea и pars spongiosa — к паховым узлам. Иннервация осуществляется из nn. perinei и п. dorsalis penis (из п. pudendus), а также из вегетативного сплетения, plexus prostaticus.

Акт мочеиспускания осуществляется следующим образом: сокращающийся m. detrusor urinae выжимает мочу из мочевого пузыря, которая поступает в мочеиспускательный канал, открывающийся благодаря расслаблению своих сфинктеров: непроизвольного (m. sphincter vesicae) и произвольного (т. sphincter urethrae).
У мужчин происходит также расслабление мышечной части предстательной железы, выполняющей функции третьего (непроизвольного) сфинктера. Закрытие мочевого пузыря происходит при расслаблении m. detrusor и сокращении названных сфинктеров.

В последнее время появились сведения о наличии четвертого сфинктера, расположенного ниже предстательной железы. Имеется и другой взгляд, согласно которому сфинктер мочевого пузыря не существует, а его роль выполняет у женщин вся уретра, а у мужчин — пречстательная и перепончатая части мочеиспускательного канала, а также эластическая ткань, заложенная в стенках уретры.

Бульбоуретральные железы. Предстательная железа. Анатомия простаты ( предстательной железы ).

Бульбоуретральные железы. Glandulae bulbourethrales представляют собой две железки величиной каждая с горошину, которые располагаются в толще diaphragma urogenitale над задним концом bulbus penis, кзади от pars membranacea urethrae. Выводной проток этих желез открывается в губчатую часть мочеиспускательного канала в области bulbus. Железы выделяют тягучую жидкость, которая защищает стенки мочеиспускательного канала от раздражения мочой.

Артерии к бульбоуретральным железам подходят из a. pudenda interna. Венозный отток происходит в вены bulbus и diaphragma urogenitale. Лимфатические сосуды идут к nodi lymphatici iliaci interni.
Иннервируются железы из п. pudendus.

Предстательная железа. Анатомия простаты ( предстательной железы ).

Предстательная железа, prostata (prostates, греч. от proistanai — представить, выдаваться вперед), представляет собой меньшей частью железистый, большей частью мышечный орган, охватывающий начальную часть мужского мочеиспускательного канала. Как железа она выделяет секрет, составляющий важную часть спермы и стимулирующий спермин, и потому развивается ко времени полового созревания. Имеются указания и на наличие эндокринной функции железы.
 (300x390, 18Kb)

Предстательная железа (prostata), семенные пузырьки (vesiculae seminales) и семявыносяшие протоки (ductus deierentis) вскрыты Простатическая часть мочеиспускательною канала частично вскрыта: 1-семявыносящий проток; 2-ампула семявыносящею протока; 3-семенной пузырек; 4-выделительный проток семенною пузырька; 5-семявыбрасываюший проток; 6-предстательная железа; 7-мужская маточка; 8-мочеиспускательный канал; 9-гребень мочеиспускательного канала; 10-семенной холмик; 11-устье семявыбрасываюшего протока.

Как мышца она является непроизвольным сфинктером мочеиспускательного канала, в частности препятствующим истечению мочи во время эякуляции, вследствие чего моча и сперма не смешиваются. До наступления половой зрелости является исключительно мышечным органом, а ко времени полового созревания (17 лет) становится и железой. Формой и величиной prostata напоминает каштан. В ней различают основание, basis prostatae, обращенное к мочевому пузырю, и верхушку, apex, примыкающую к diaphragma urogenitale.

Передняя выпуклая поверхность железы, facies anterior, , обращена к лобковому симфизу, от которого отделяется рыхлой клетчаткой и заложенным в ней венозным сплетением (plexus prostaticus); поверх этого сплетения лежат ligg. pubovesicalia. Задняя поверхность прилежит к прямой кишке, отделяясь от последней только пластинкой тазовой фасции (septum rectovesicale); поэтому ее можно прощупать у живого на передней стенке прямой кишки пальцем, введенным per rectum. Urethra проходит через предстательную железу от ее основания к верхушке, располагаясь в срединной плоскости, ближе к передней поверхности железы, чем к задней.

Семявыбрасывающие протоки входят в железу на задней поверхности, направляются в толще ее вниз, медиально и кпереди и открываются в pars prostatica urethrae. Участок железы, расположенный между обоими ductus ejaculatorii и задней поверхностью urethrae, имеющий клиновидную форму, составляет средний отдел железы, isthmus prostatae (lobus medius). Остальную, большую, часть составляют lobi dexter et sinister, которые, однако, с поверхности не разграничены резко друг от друга.




Средняя доля представляет значительный хирургический интерес, так как, увеличиваясь при гипертрофии предстательной железы, может быть причиной расстройства мочеиспускания.
Наибольшим диаметром предстательной железы является поперечный (близ основания); он равен в среднем 3,5 см, переднезадний — 2 см, вертикальный — 3 см.
Prostata окружена фасциальными листками, происходящими за счет fascia pelvis и образующими вместилище, в котором находится венозное сплетение, plexus prostaticus.

Кнутри от фасциальный оболочки находится capsula prostatica, состоящая из гладкой мышечной и соединительной ткани. Ткань prostatae состоит из желез (parenchyma glandularae), погруженных в основу, состоящую главным образом из мышечной ткани, substantia muscularis; дольки ее состоят из тонких, слегка разветвленных трубочек, впадающих в ductuli prostatici (числом около 20 — 30), которые открываются на задней стенке предстательной части urethrae по сторонам от colliculus seminalis. Часть предстательной железы кпереди от проходящего через нее мочеиспускательного канала состоит почти исключительно из мышечной ткани.

Сосуды и нервы: prostata получает питание из аа. vesicales inferiores и аа. rectales mediae. Вены вступают в plexus vesicalis et prostaticus, из которого выносят кровь vv. vesicales inferiores; сосуды предстательной железы достигают полного развития лишь после наступления половой зрелости.

Лимфатические сосуды вливаются в узлы, расположенные в передних отделах полости таза.
Нервы происходят из plexus hypogastrics inf.

Пути выведения семени в последовательном порядке: tubuli seminiferi recti, rete testis, ductuli efferentes, ductus epididymidis, ductus deferens, ductus ejaculatorius, pars prostatica urethrae и остальные части мочеиспускательного канала.

с использованием материалов книги Григория Белоголовского «АНАТОМИЯ ЧЕЛОВЕКА»
Рубрики:  Анатомичка

Комментарии (0)

АНАТОМИЧКА, Splanchnoligia: Женские половые органы, ч.27.

Дневник

Четверг, 11 Декабря 2008 г. 23:26 + в цитатник
ЖЕНСКИЕ ПОЛОВЫЕ ОРГАНЫ (organa genitalia feminina)

Гормональные функции яичников

Яичники — парные женские половые железы , расположенные в полости малого таза, выполняют генеративную функцию, т.е. является местом, где развиваются и созревают женские половые клетки, а также являются железами внутренней секреции и вырабатывают половые гормоны — эндокринная функция.

Яичники вырабатывают стероидные гормоны . Фолликулярный аппарат яичников производит в основном эстрогены, но также слабые андрогены и прогестины. Жёлтое тело яичников (временная железа внутренней секреции, существующая только в лютеиновой фазе цикла у женщины), напротив, производит в основном прогестины, и в меньшей степени — эстрогены и слабые андрогены.

Яичники состоят из стромы (соединительной ткани) и коркового вещества, в котором находятся фолликулы в разных стадиях развития (примордиальный, первичный, вторичный, третичный фолликулы) и регресса (атретические тела, белые тела).

Яичники человека работают циклически. Один из фолликулов в процессе созревания становится доминантным и тормозит созревание остальных. В доминантном фолликуле созревает яйцеклетка. Когда фолликул полностью созреет, он лопается, и ооцит II порядка (яйцеклетка - более привычный термин, но менее правильный) выходит из него в брюшную полость. Этот процесс называется овуляцией. Затем он захватывается фимбриями и током жидкости, создаваемым перистальтикой маточной трубы, попадает в маточную трубу, по которой он мигрирует в матку.
Если в пределах 3-х дней (ограничение - срок жизни сперматозоидов) до овуляции до 1 суток после овуляции (ограничение - срок жизни яйцеклетки) у женщины состоялся вагинальный половой акт с мужчиной, приведший к попаданию достаточного количества подвижных сперматозоидов во влагалище, то вероятно оплодотворение ооцита II порядка (оно происходит в брюшной полости или просвете маточной трубы). Если оплодотворение состоялось, то мигрирует уже эмбрион.

Лопнувший фолликул подвергается трансформации в жёлтое тело, которое начинает секретировать прогестины. Затем желтое тело подвергается рассасыванию, обратному развитию, в результате чего секреция прогестинов резко падает и наступает менструация. После менструации снова начинается созревание фолликулов, один из них становится доминантным — начинается новый менструальный цикл.
Менструальный цикл у женщин в норме длится в среднем 28 дней (возможны индивидуальные вариации, считающиеся нормальными — от 25 до 31 дня).

Стероиды Стероиды - вещества животного или реже растительного происхождения, обладающие высокой биологической активностью. Стероиды образуются в природе из изопреноидных предшественников. Особенностью строения стероидов является наличие конденсированной тетрациклической системы гонана Ядро гонана в стероидах может быть насыщенным или частично ненасыщенным, содержать алкильные и некоторые функциональные группы - гидроксильные, карбонильные или карбоксильную.[1]

В регуляции обмена веществ и некоторых физиологических функций организма участвуют стероидные гормоны. Ряд синтетических гормонов, например, преднизолон, по действию на организм превосходят природные аналоги. В группу стероидов входят содержащиеся в организме человека стероидный спирт холестерин, а также желчные кислоты - соединения, имеющие в боковой цепи карбоксильную группу, например, холевая кислота.

К стероидам относятся также сердечные гликозиды - вещества растительного происхождения (из наперстянки, строфанта, ландыша), регулирующие сердечную деятельность. В гликозидах стероидный фрагмент соединен гликозидной связью с олигосахаридом.[2]

Эстрогены — общее собирательное название подкласса стероидных гормонов , производимых в основном фолликулярным аппаратом яичников у женщин. В небольших количествах эстрогены производятся также яичками у мужчин и корой надпочечников у обоих полов.

Название «эстрогены» происходит от способности этих гормонов вызывать у самок млекопитающих пролиферацию, ороговение и частичное слущивание эпителия влагалища и выделение слущивающимся эпителием влагалища специфических запаховых веществ (феромонов), привлекающих самцов, т.е. течку (эструс).

У женщин в физиологических концентрациях эстрогены усиливают секрецию влагалищной слизи, рост и дифференцировку клеток влагалищного эпителия , однако не вызывают столь характерного для самок млекопитающих феномена ороговения и слущивания эпителия влагалища. Вместе с тем при повышенных концентрациях эстрогенов и у женщин может наблюдаться (обычно не видимое макроскопически, а лишь в мазках из влагалища под микроскопом) частичное ороговение и тенденция к слущиванию влагалищного эпителия.

В клетках органов-мишеней эстрогены образуют комплекс со специфическими рецепторами (обнаружены в различных органах — в матке, влагалище, мочеиспускательном канале, молочной железе, печени, гипоталамусе, гипофизе). Комплекс рецептор-лиганд взаимодействует с эстроген-эффекторными элементами генома и специфическими внутриклеточными протеинами, индуцирующими синтез иРНК, протеинов и высвобождение цитокинов и факторов роста.

Эстрогены оказывают сильное феминизирующее влияние на организм. Проще говоря, женская красота прямо пропорциональна уровню эстрогена. Они стимулируют развитие матки, маточных труб, влагалища, стромы и протоков молочных желез, пигментацию в области сосков и половых органов, формирование вторичных половых признаков по женскому типу, рост и закрытие эпифизов длинных трубчатых костей.

Способствуют своевременному отторжению эндометрия и регулярным кровотечениям, в больших концентрациях вызывают гиперплазию и кистозно-железистое перерождение эндометрия, подавляют лактацию, угнетают резорбцию костной ткани, стимулируют синтез ряда транспортных белков (тироксинсвязывающий глобулин, транскортин, трансферрин, протеин, связывающий половые гомоны), фибриногена.

Оказывают прокоагулянтное действие, индуцируют синтез в печени витамин К-зависимых факторов свертывания крови (II, VII, IX, X), снижают концентрацию антитромбина III.


Эстрогены модулируют чувствительность рецепторов к прогестинам и симпатическую регуляцию тонуса гладкой мускулатуры, стимулируют переход внутрисосудистой жидкости в ткани и вызывают компенсаторную задержку натрия и воды. В больших дозах препятствуют деградации эндогенных катехоламинов, конкурируя за активные рецепторы КОМТ.

После менопаузы в организме женщин образуется только незначительное количество эстрогенов. Снижение содержания эстрогенов сопровождается у многих женщин сосудодвигательной и терморегулирующей нестабильностью ("приливы" крови к коже лица), расстройствами сна, а также прогрессирующей атрофией органов мочеполовой системы.

Вследствие дефицита эстрогенов в постменопаузном периоде у женщин развивается остеопороз (главным образом позвоночника).

Эстрогены повышают концентрации в крови тироксина, железа, меди. Оказывают антиатеросклеротическое действие, увеличивают содержание ЛПВП, уменьшает ЛПНП и холестерина (уровень триглицеридов возрастает).

Андрогены — общее собирательное название группы стероидных гормонов, производимых половыми железами (яичками у мужчин и яичниками у женщин) и корой надпочечников и обладающих свойством в определённых концентрациях вызывать андрогенез, вирилизацию организма — развитие мужских вторичных половых признаков — у обоих полов.

Андрогены оказывают сильное анаболическое и анти-катаболическое действие, повышают синтез белков и тормозят их распад. Повышают утилизацию глюкозы клетками за счёт повышения активности гексокиназы и других гликолитических ферментов. Понижают уровень глюкозы в крови. Увеличивают мышечную массу и силу.

Способствуют снижению общего количества подкожного жира и уменьшению жировой массы по отношению к мышечной массе, но могут увеличить отложения жира по мужскому типу (на животе) при одновременном уменьшении отложений жира в типично женских местах (ягодицы и бедра, грудь).

Понижают уровень холестерина и липидов в крови, тормозят развитие атеросклероза и сердечно-сосудистых заболеваний, но в меньшей степени, чем эстрогены (отчасти именно поэтому у мужчин продолжительность жизни меньше и сердечно-сосудистые заболевания чаще и развиваются в более молодом возрасте, чем у женщин).


Андрогены повышают возбудимость психосексуальных центров ЦНС, либидо (сексуальное влечение) у обоих полов, частоту и силу эрекций полового члена у мужчин, силу эрекции клитора у женщин. У женщин андрогены понижают секрецию влагалищной смазки, в силу чего при высоком уровне андрогенов у женщин вагинальный половой акт может стать болезненным.

Андрогены вызывают появление или развитие мужских вторичных половых признаков: понижение и огрубление голоса, рост волос на лице и теле по мужскому типу, превращение пушковых волос на лице и теле в терминальные, усиление секреции пота и изменение его запаха, у мужчин — увеличение размеров полового члена и яичек до генетически заданного максимума, пигментацию мошонки и развитие складчатости кожи мошонки, пигментацию сосков, формирование мужского типа лица и скелета, увеличение размеров простаты и количества секрета в ней. При определённой генетической предрасположенности андрогены могут вызывать облысение головы по мужскому типу.

У женщин андрогены в характерных для мужчин концентрациях вызывают увеличение размеров клитора и половых губ и сближение половых губ (что делает их более похожими на мошонку), частичную атрофию молочных желез, матки и яичников, прекращение менструаций и овуляций, бесплодие. У беременной на ранних стадиях высокие концентрации андрогенов вызывают выкидыш в связи с остановкой роста размеров матки и создающейся в матке «теснотой» для плода, несмотря на то, что сами по себе андрогены вызывают расслабление мускулатуры матки подобно прогестерону.

Также андрогены могут вызвать развитие у зародыша женского пола мужских наружных половых органов или закладку «мужского» типа ЦНС.

Андрогены также несколько увеличивают секрецию глюкокортикоидных гормонов коры надпочечников, и увеличивает размеры коры надпочечников. По-видимому, именно этим эффектом андрогенов объясняется то, что у мужчин и у самцов различных видов млекопитающих надпочечники в среднем большего размера, чем у женщин или самок млекопитающих. Вероятно, этот физиологический эффект андрогенов предусмотрен природой в связи с тем, что самцы в норме более агрессивны и чаще подвергаются стрессам, травмам и повреждениям и, следовательно, нуждаются в более крупных надпочечниках и возможности обеспечить более высокий уровень кортизола в крови в случае стресса или травмы.

Прогестины , или гестагены — общее собирательное название подкласса стероидных гормонов, производимых в основном жёлтым телом яичников и частично корой надпочечников, а также плацентой плода.

Физиологическая функция прогестинов у женщин заключается в основном в обеспечении возможности наступления и затем в поддержании беременности (гестации) — откуда и название.

Прогестины cпособствуют образованию нормального секреторного эндометрия у женщин. Вызывают переход слизистой оболочки матки из фазы пролиферации в секреторную фазу, а после оплодотворения способствуют ее переходу в состояние, необходимое для развития оплодотворённой яйцеклетки.


Прогестины понижают экспрессию эстрогенных рецепторов в эндометрии и снижает пролиферативную активность клеток эндометрия, профилактируют развитие гиперплазии и кистозно-железистого перерождения эндометрия при воздействии эстрогенов. Именно с отсутствием или недостаточностью нормального секреторно-трансформирующего и антипролиферативного воздействия прогестинов на эндометрий связывают гиперплазию эндометрия при таких состояниях, как синдром поликистозных яичников, гиперэстрогенная фаза климакса и др.

Прогестины стимулируют развитие концевых элементов молочной железы, дифференцировку долек и протоков и способствует завершению созревания молочных желёз у девочек, приобретению молочными железами «взрослой» округлой формы вместо конической подростковой. Одновременно прогестины понижают экспрессию эстрогенных рецепторов в ткани молочной железы и профилактируют развитие гиперплазии молочных желёз, мастопатии и кистозно-фиброзных поражений молочной железы при воздействии эстрогенов. Возможно, с этим эффектом прогестинов связано профилактическое действие повторных беременностей в отношении рака молочной железы.

Прогестины понижают возбудимость и сократимость мускулатуры матки и маточных труб несколькими разными механизмами. Они повышают активность специфических ферментов, расщепляющих окситоцин и вазопрессин — окситоциназы и вазопрессиназы. Кроме того, прогестины понижают чувствительность мускулатуры матки к эстрогенам, окситоцину и вазопрессину, снижая экспрессию соответствующих рецепторов в миометрии.

Также прогестины понижают содержание простагландинов в миометрии, уменьшая их синтез и повышая активность ферментов, ответственных за их распад. Прогестины понижают чувствительность миометрия к сократительному действию серотонина, гистамина, и одновременно увеличивают экспрессию β-адренорецепторов в миометрии, обладающих «тормозным», маточно-расслабляющим эффектом.


Вероятно, с понижением прогестинами содержания простагландинов в миометрии и эндометрии связана способность прогестинов уменьшать болезненность при менструациях. С прогестиновой недостаточностью связывают болезненность менструаций и многие проявления предменструального синдрома.

Прогестины обладают антиандрогенной активностью за счет снижения активности 5α-редуктазы и уменьшения образования активного метаболита тестостерона, 5α-дигидротестостерона, а также за счет повышения в крови уровня ГСПС (глобулина, связывающего половые стероиды). Они также понижают экспрессию андрогенных рецепторов в тканях и, следовательно, чувствительность тканей к андрогенам. Также прогестины способствует увеличению диуреза за счет антиальдостеронового действия, уменьшают канальцевую реабсорбцию катионов натрия, анионов хлора и воды.

Эстрадиол — основной и наиболее активный для человека женский половой гормон; эстроген. Вырабатывается фолликулярным аппаратом яичников у женщин. Небольшие количества эстрадиола вырабатываются также корой надпочечников у обоих полов и яичками у мужчин. По химическому строению является стероидным гормоном.

У мужчин основным источником эстрадиола является не синтез в яичках, а конверсия (ароматизация) андрогенов (таких, как тестостерон и андростендион) в эстрогены в периферических тканях, происходящая при участии фермента 17β-ароматазы.

Лютеинизи́рующий гормо́н (ЛГ, лютеотропин, лютропин) — пептидный гормон, секретируемый гонадотропными клетками передней доли гипофиза. Совместно с другим гипофизарным гонадотропином — фолликулостимулирующим гормоном (ФСГ), — ЛГ необходим для нормальной работы репродуктивной системы. В женском организме ЛГ стимулирует секрецию яичниками эстрогенов, а пиковое повышение его уровня инициирует овуляцию. В мужском организме ЛГ стимулирует интерстициальные клетки Лейдига, вырабатывающие тестостерон.

 (477x222, 18Kb)

Лютеинизирующий гормон является сложным белком — гликопротеином. По строению он похож на другие гормоны-гликопротеины — ФСГ, ТТГ, ХГЧ. ЛГ человека имеет массу 28,5 кД. Белок имеет димерную структуру и состоит из 2 субъединиц α и β, соединённых двумя дисульфидными мостиками, к каждой из которых присоединены углеводные остатки. Альфа-субъединицы ЛГ, ФСГ, ТТГ и ХГЧ идентичны и состоят из 92 аминокислотных остатков. Бета-субъединицы отличаются.

Бета-субъединица лютропина, которая и определяет биологическое действие гормона, специфически взаимодействуя с мембранным рецептором, представлена 121 аминокислотой. Она содержит ту же последовательность аминокислот, что и ХГЧ, и стимулирует тот же самый рецептор. Однако ХГЧ имеет 24 дополнительных аминокислоты, и оба гормона существенно отличаются своими углеводными компонентами.
Различная структура олигосахаридных фрагментов влияет на биологическую активность и скорость разрушения гормонов. Период полураспада ЛГ составляет 20 минут, что короче, чем у ФСГ (3—4 часа) и ХЧГ (24 часа).

Ген, кодирующий α-субъединицу локализован в длинном плече шестой хромосомы (6q12.21). Ген, кодирующий структуру β-субъединицы локализован в скоплении генов LHB/CGB длинного плеча 19-й хромосомы (19q13.32.). В отличие от альфа-гена экспрессия гена бета-субъединицы ограничена гонадотропными клетками гипофиза. Активность гена регулируется гипоталамическим гонадотропин-рилизинг-гормоном. Ингибин, активин и половые стероиды не оказывают влияния на активность генов, ответственных за образование β-субъединицы.

Как у мужчин, так и у женщин ЛГ необходим для репродукции. У женщин в процессе менструального цикла ФСГ стимулирует рост фолликулов и вызывает дифференцировку и пролиферацию клеток зернистого слоя.

Под действием ФСГ созревающие фолликулы секретируют всё возрастающие количества эстрогенов, среди которых наибольшее значение имеет эстрадиол, а также на их клетках экспрессируются и рецепторы к ЛГ. В результате к моменту созревания фолликула повышение уровня эстрадиола становится настолько высоким, что это приводит к активации гипоталамуса по принципу положительной обратной связи и интенсивному высвобождению ЛГ и ФСГ гипофизом.

Этот всплеск уровня ЛГ запускает овуляцию, при этом не только высвобождается яйцеклетка, но и инициируется процесс лютеинизации — превращения остаточного фолликула в жёлтое тело, которое в свою очередь начинает вырабатывать прогестерон для подготовки эндометрия к возможной имплантации. ЛГ необходим для поддержания существования жёлтого тела примерно в течение 14 дней. В случае наступления беременности лютеиновая функция будет поддерживаться действием гормона трофобласта — хорионического гонадотропина. ЛГ также стимулирует клетки теки в яичниках, которые обеспечивают продукцию андрогенов и предшественников эстрадиола.

У мужчин ЛГ оказывает влияние на клетки Лейдига яичек и отвечает за выработку тестостерона, который оказывает влияние на сперматогенез и является главным «мужским» гормоном.

Выделение ЛГ находится под контролем ритмичных выбросов гипоталамусом гонадолиберина, частота которых по принципу обратной связи находится в зависимости от выделения гонадами эстрогенов.

Хорионический гонадотропин, или ХГ — гонадотропный гормон плаценты , по аминокислотной последовательности отличающийся и от лютеинизирующего гормона, и от фолликулостимулирующего гормона.
Хорионический гонадотропин по химическому строению является гликопротеином, состоящим из двух субъединиц. α-Субъединица ХГ полностью гомологична α-субъединицам лютеинизирующего, фолликулостимулирующего и тиреотропного гормонов. β-Субъединица ХГ уникальна именно для этого гормона и отличает его от ЛГ, ФСГ и ТТГ.

Хорионический гонадотропин состоит из 237 аминокислот и имеет молекулярную массу 36.7 килодальтон.
Хорионический гонадотропин обладает биологическими свойствами как ЛГ, так и ФСГ, и связывается с обоими типами рецепторов к гонадотропинам, но лютеинизирующая активность у ХГ значительно преобладает над фолликулостимулирующей. ХГ по лютеинизирующей активности значительно превосходит «обычный» ЛГ, производимый передней долей гипофиза.

Именно благодаря секреции значительных количеств ХГ плацентой плода жёлтое тело, в норме существующее около 2 недель в течение каждого менструального цикла, у беременных не подвергается рассасыванию и остается функционально активным в течение всего срока беременности. Причём жёлтое тело у беременных под влиянием ХГ производит очень большие количества прогестерона, физиологически невозможные в норме в небеременном организме. Также ХГ стимулирует продукцию эстрогенов и слабых андрогенов фолликулярным аппаратом яичников.

В некоторой степени ХГ также обладает, по-видимому, кортикотропными свойствами, повышая стероидогенез в коре надпочечников и способствуя функциональной гиперплазии коры надпочечников у беременной. Повышение секреции глюкокортикоидов под влиянием ХГ может играть роль в механизмах адаптации организма беременной к стрессу, каким является беременность, а также обеспечивает физиологическую иммуносупрессию, необходимую для развития генетически наполовину чужеродного организма внутри матки. В этой связи стоит отметить, что гипофизарные гонадотропины кортикотропными свойствами не обладают.

Хорионический гонадотропин также играет роль в развитии и поддержании функциональной активности самой плаценты, улучшает её трофику и способствует увеличению количества ворсин хориона.
В небеременном организме в норме ХГ отсутствует. Однако ХГ часто производится различными злокачественными опухолями (эктопическая продукция ХГ).

Введение экзогенного ХГ у женщин в середине цикла вызывает, помимо увеличения продукции эстрогенов и прогестерона в яичниках, овуляцию, а затем лютеинизацию лопнувшего фолликула и в дальнейшем поддерживает функцию жёлтого тела.

У мужчин экзогенный ХГ стимулирует сперматогенез и продукцию половых стероидов.

по материалам Википедии
Рубрики:  Анатомичка

Комментарии (0)

АНАТОМИЧКА, Splanchnoligia: Женские половые органы, ч.26.

Дневник

Четверг, 11 Декабря 2008 г. 22:53 + в цитатник
ЖЕНСКИЕ ПОЛОВЫЕ ОРГАНЫ (organa genitalia feminina)

Фолликул яичника

Фолликул яичника (лат. folliculus ovaricus) — структурный компонент яичника, состоящий из яйцеклетки, окружённой слоем эпителиальных клеток и двумя слоями соединительной ткани.

Ооцит

В фолликуле содержится ооцит 1-го порядка. Ядро ооцита называется germinal vesicle.
 (400x350, 31Kb)

Гранулёзные клетки

Ооцит окружён слоем гликопротеинов, zona pellucida (zona striata). Он, в свою очередь, окружён слоем гранулёзных клеток.

Тека-клетки

Гранулёзные клетки окружены тонким слоем внеклеточного матрикса — базальной мембраной (на рисунке обозначена, как fibro-vascular coat). Вокруг базальной мембраны находятся тека-клетки.
В соответствии со стадией развития различают примордиальные, преантральные (первичные), антральные (вторичные) и преовуляторные (третичные) фолликулы.

Примордиальные фолликулы размером 50 мкм неразличимы невооружённым взглядом и заложены ещё до рождения. Они образуются в процессе митотической пролиферации первичных зародышевых клеток (оогоний), поступивших в зародышевый яичник на 6-ой неделе беременности. Оогонии проходят профазу I мейотического деления и становятся первичными ооцитами. Эти ооциты окружаются одним слоем эпителиальных клеток и образуют зародышевые фолликулы. Не включённые в фолликул ооциты подвергаются обратному развитию. Митотическая пролиферация прекращается в дородовой период беременности. Таким образом, к моменту рождения число примордиальных фолликулов в яичнике составляет примерно 1-2 миллиона.

Развитие примордиальных фолликулов приостановлено вплоть до периода полового созревания. К этому времени в яичнике остаются лишь 400 000 фолликулов. Гипофиз начинает вырабатывать фолликулостимулирующий гормон (ФСГ), что стимулирует созревание 5-15 примордиальных фолликулов. Теперь эти фолликулы являются преантральными (первичными) фолликулами (размер — 150—200 мкм). Ооцит начинает расти, внешняя поверхность ооцита покрывается гликопротеином, формирующим zona pellucida. Теперь ооцит покрыт уже 2-4 слоями гранулезных клеток, из соединительной ткани формируются тека-клетки.

В следующей стадии формируется полость (antrum folliculare), содержащая фолликулярную жидкость (liquor folliculare). Теперь яйцеклетка расположена на яйценосном бугорке (cumulus oophorus), а тека-клетки, отвечающие за выработку эстрогена, разделяются на клетки внешней (theca externa) и внутренней (theca interna) оболочки. В это же время эпителиальные клетки фолликула превращаются в гранулёзные клетки, отвечающие за выработку прогестинов. Диаметрантрального (вторичного) фолликула составляет 500 мкм.

Во время созревания фолликула клетки внутренней оболочки вырабатывает андрогены, которые сквозь базальную мембрану проникают в гранулёзные клетки и там трансформируются в эстрогены, главным образом, эстрадиол.

Образование фолликулярной полости провоцирует быстрый рост, в течение этого периода диаметр фолликула увеличивается с менее чем 1 мм до 16-20 мм непосредственно перед овуляцией. Полость составляет большую часть преовуляторного (третичного) фолликула (граафов пузырёк), количество фолликулярной жидкости примерно в 100 раз больше, чем в антральном фолликуле.

Примерно за 24 часа до овуляции тека-клетки начинают вырабатывать большое количество эстрогена. Повышенное содержание эстрогена стимулирует выброс лютеинизирующего гормона (ЛГ), который и инициирует овуляцию. В стенке фолликула образуется выпячивание (стигма), которое разрывается, и яйцеклетка выходит из фолликула — происходит овуляция. Если зрелый фолликул не прошёл овуляцию, образуется кистозный фолликул.

После овуляции из фолликула (из гранулёзных и тека-клеток) образуется жёлтое тело, вырабатывающее прогестерон. Прогестерон предотвращает преждевременное отторжение функционального слоя эндометрия (менструация). Если яйцеклетка не была оплодотворена, жёлтое тело прекращает функционировать, уровень прогестерона падает, начинается менструация. Если же произошло оплодотворение, яйцеклетка начинает вырабатывать хорионический гонадотропин, который теперь вместо ЛГ стимулирует рост жёлтого тела.

 (700x580, 107Kb)

Процессы в яичнике в течение менструального цикла:

1 Менструация
2 Созревающий фолликул
3 Граафов фолликул
4 Овуляция
5 Жёлтое тело
6 Жёлтое тело прекращает функционировать


по материалам Википедии
Рубрики:  Анатомичка

Комментарии (5)

АНАТОМИЧКА, Splanchnoligia: Женские половые органы, ч.25.

Дневник

Четверг, 11 Декабря 2008 г. 20:43 + в цитатник
ЖЕНСКИЕ ПОЛОВЫЕ ОРГАНЫ (organa genitalia feminina)

Женские половые органы, organa genitalia feminina, состоят из двух отделов: 1) расположенные в тазу внутренние половые органы — яичники, маточные трубы, матка, влагалище и 2) видимый снаружи отдел — наружные половые органы (pudendum femininum), куда входят большие и малые половые губы, клитор, девственная плева.

ЯИЧНИК

Яичник, ovarium , парный орган, является женской половой железой, аналогичной мужскому яичку. Он представляет плоское овальное тело длиной 2,5 см, шириной 1,5 см, толщиной 1 см. В нем различают два конца: верхний, несколько закругленный, конец обращен к маточной трубе и носит название трубного конца, extremitas tubaria; противоположный нижний, более заостренный, конец, extremitas uterina, соединен с маткой особой связкой (lig. ovarii proprium). Две поверхности, facjes lateralis et medialis, отделены друг от друга краями: свободный задний край, margo liber, выпуклый, другой же, передний край, брыжеечный, margo mesovaricus, прямой, прикрепляется к брыжейке. Этот край называют воротами яичника, hilus ovarii, так как здесь в яичник входят сосуды и нервы.
 (357x191, 13Kb)
Верхний же отрезок шейки, примыкающий непосредственно к телу, называется portio supravaginalis (cervicis). Передняя и задняя поверхности отделены друг от друга краями, margo uteri (dexter et sinister). Вследствие значительной толщины стенок матки полость ее, саvitas uteri, невелика в сравнении с величиной органа.

Яичник содержит просвечивающиеся на свежем препарате везикулярные яичниковые фолликулы, folliculi ovarici vesiculosi, в каждом из которых находится развивающаяся женская половая клетка — ооцит. Фолликулы находятся в строме, stroma ovarii, в которой проходят сосуды и нервы. В зависимости от стадии развития фолликулы имеют различную величину — от микроскопических размеров до 6 мм в диаметре. Когда зрелый фолликул лопается (овуляция) и выделяется заключенный в нем ооцит, стенки его спадаются, полость выполняется кровью и клетками желтоватой окраски — получается желтое тело, corpus luteum. Ооцит превращается в зрелую яйцеклетку уже после овуляции в маточной трубе. В случае наступления беременности желтое тело увеличивается и превращается в крупное, около 1 см в диаметре, образование, corpus luteum graviditatis, следы которого могут сохраняться годами; желтое же тело, образующееся при отсутствии оплодотворения вышедшего из фолликула яйца, отличается меньшими размерами и через несколько недель исчезает.

Вместе с атрофией клеток желтого тела последнее теряет свой желтый цвет и получает название белого тела, corpus albicans. С течением времени corpus albicans совершенно исчезает. Обыкновенно в течение 28 дней достигает зрелости один фолликул. Вследствие того, что фолликулы периодически лопаются (овуляция), поверхность яичника с возрастом покрывается морщинками и углублениями .

Яичник не покрыт брюшиной, которая здесь редуцировалась, а вместо нее он покрыт зародышевым эпителием. Благодаря этому яйцеклетка, после того как фолликул лопнул, может сразу попасть на поверхность яичника и далее в маточную трубу.

МАТОЧНАЯ ТРУБА. СТРОЕНИЕ СТЕНКИ ТРУБЫ. ПРИДАТОК ЯИЧНИКА И ОКОЛОЯИЧНИК.

 (593x401, 39Kb)
Маточная труба, tuba uterina s. salpinx, представляет собой парный проток, по которому яйцеклетки с поверхности яичника, куда они попадают во время овуляции, проводятся в полость матки. Каждая труба заключена в складку брюшины, составляющую верхнюю часть широкой связки матки и носящую название брыжейки трубы, mesosalpinx. Длина трубы в среднем равна 10—12 см, причем правая труба обычно несколько длиннее левой.

Ближайший к матке участок трубы на протяжении 1 — 2 см имеет горизонтальное направление: достигнув стенки таза, труба огибает яичник, сперва идет кверху вдоль его переднего края, а потом назад и вниз, соприкасаясь с медиальной поверхностью яичника. В трубе различают следующие отделы:
1) pars uterina - часть канала, заключенного в стенке матки;
2) isthmus, перешеек - ближайший к матке равномерно суженный отдел (внутренняя треть трубы) диаметром около 2 - 3 мм;
3) ampulla - следующий за перешейком кнаружи отдел, увеличивающийся постепенно в диаметре (на ампулу приходится около половины протяжения трубы);
4) infundibulum, воронка, является непосредственным продолжением ампулы и представляет, согласно названию, воронкообразное расширение трубы, края которого снабжены многочисленными отростками неправильной формы, fimbriae tubae — бахромки.

Одна из бахромок, обычно более значительная по величине, чем остальные, тянется в складке брюшины до самого яичника и носит название fimbria ovarica. В верхушке воронки находится круглое отверстие — ostium abdominale tubae, через которое выделившаяся из яичника яйцеклетка попадает в ampulla tubae. Противоположное отверстие трубы, которым она открывается в полость матки, называется ostium uterinum tubae.

Строение стенки трубы.

Тотчас под брюшиной или серозной оболочкой, tunica serosa, располагается соединительнотканная, tunica subserosa, содержащая сосуды и нервы. Под соединительнотканной лежит мышечная оболочка, tunica muscularis, состоящая из 2 слоев неисчерченных мышечных волокон: наружного продольного и внутреннего циркулярного; циркулярный слой особенно хорошо выражен близ матки.

Tunica mucosa ложится многочисленными продольными складками, plicae tubariae; она покрыта мерцательным эпителием (реснички эпителия прогоняют содержимое трубы по направлению к матке). Слизистая оболочка с одной стороны продолжается в слизистую оболочку матки, с другой стороны через ostium abdominale примыкает к серозной оболочке брюшной полости, благодаря чему труба открывается в полость брюшины, которая у женщины не представляет в отличие от мужчины замкнутого серозного мешка.

Придаток яичника и околояичник

Они представляют собой два рудиментарных образования, заключенных между листками широкой связки матки: между трубой и яичником epoophoron (соответствует ductuli efferentes testis) и медиальнее его paroophoron (соответствует paradidymis мужчин).

Матка. Стенки матки.

Матка, uterus (греч. metra s. hystera), представляет собой непарный полый мышечный орган, расположенный в полости таза между мочевым пузырем спереди и прямой кишкой сзади. Поступающее в полость матки через маточные трубы яйцо в случае оплодотворения подвергается здесь дальнейшему развитию до момента удаления зрелого плода при родах. Кроме этой генеративной функции, матка выполняет также менструальную.

Достигшая полного развития девственная матка имеет грушевидную форму, сплюснутую спереди назад. В ней различают дно, тело и шейку.
 (550x421, 139Kb)

Дном, fundus uteri , называется верхняя часть, выступающая выше линии входа в матку маточных труб.Тело, corpus uteri , имеет треугольные очертания, суживаясь постепенно по направлению к шейке. Шейка, cervix uteri, является продолжением тела, но более круглая и уже последнего. Шейка матки своим наружным концом вдается в верхний отдел влагалища, причем часть шейки, вдающаяся во влагалище, носит название влагалищной части, portio vaginalis (cervicis).

На фронтальном разрезе полость матки имеет вид треугольника, основание которого обращено ко дну матки, а верхушка — к шейке. В углы основания открываются трубы, а у верхушки треугольника полость матки продолжается в полость, или канал, шейки, canalis cervicis uteri.
Место перехода матки в шейку сужено и носит название перешейка матки, isthmus uteri. Канал шейки открывается в полость влагалищаматочным отверстием, ostium uteri.

Маточное отверстие у нерожавших имеет круглую или поперечно-овальную форму, у рожавших представляется в виде поперечной щели с зажившими надрывами по краям. Канал шейки у нерожавших имеет веретенообразную форму. Маточное отверстие, или зев матки, ограничено двумя губами, labium anterius et posterius. Задняя губа более тонкая и меньше выступает книзу, чем более толстая передняя. Задняя губа кажется более длинной, так как влагалище на ней прикрепляется выше, чем на передней. В полости тела матки слизистая оболочка гладкая, без складок, в канале шейки имеются складки, plicae palmatae, которые состоят из двух продольных возвышений на передней и задней поверхностях и ряда боковых, направляющихся латерально и вверх.

Стенка матки состоит из трех основных слоев:

1. Наружный, perimetrium, - это висцеральная брюшина, сросшаяся с маткой и образующая ее серозную оболочку, tunica serosa. (В практическом отношении важно отличать perimetrium, т. е. висцеральную брюшину, от parametrium, т. е. от околоматочной жировой клетчатки, лежащей на передней поверхности и по бокам шейки матки, между листками брюшины, образующей широкую связку матки.)

2. Средний, myometrium, - это мышечная оболочка, tunica muscularis. Мышечная оболочка, составляющая главную часть стенки, состоит из неисчерченных волокон, переплетающихся между собой в различных направлениях.

3. Внутренний, endometrium, - это слизистая оболочка, tunica mucosa. Покрытая мерцательным эпителием и не имеющая складок слизистая оболочка тела матки снабжена простыми трубчатыми железами, glandulae uterinae, которые проникают до мышечного слоя. В более толстой слизистой оболочке шейки, кроме трубчатых желез, находятся слизистые железы, g11. cervicales.

Средняя длина зрелой матки вне состояния беременности равняется 6 — 7,5 см, из которых на шейку приходится 2,5 см. У новорожденной девочки шейка длиннее тела матки, но последнее подвергается усиленному росту в период наступления половой зрелости.

При беременности матка быстро изменяется по величине и форме. На 8-м месяце она достигает 18 — 20 см и принимает округленно-овальную форму, раздвигая при своем росте листки широкой связки. Отдельные мышечные волокна не только умножаются в числе, но и увеличиваются в размерах. После родов матка постепенно, но довольно быстро уменьшается в размерах, почти возвращаясь к своему прежнему состоянию, однако сохраняя несколько большие размеры. Увеличившиеся мышечные волокна подвергаются жировому перерождению.

Топография матки. Сосуды ( кровоснабжение ) матки. Иннервация ( нервы )матки.
 (501x420, 80Kb)
Матка обладает значительной подвижностью, расположена таким образом, что продольная ось ее приблизительно параллельна оси таза. При пустом мочевом пузыре дно матки направлено вперед, а передняя ее поверхность — вперед и вниз; подобный наклон матки вперед носит название anteversio. При этом тело матки, перегибаясь вперед, образует с шейкой угол, открытый кпереди, anteflexio. При растяжении пузыря матка может быть отклонена назад (retroversio), продольная ось ее будет идти сверху вниз и вперед. Изгиб матки назад (retroflexio) представляет собой патологическое явление.

Брюшина покрывает спереди матку до места соединения тела с шейкой, где серозная оболочка загибается на мочевой пузырь. Углубление брюшины между мочевым пузырем и маткой носит название excavatio vesicouterine. Передняя поверхность шейки матки соединяется посредством рыхлой клетчатки с задней поверхностью мочевого пузыря.
 (550x621, 211Kb)
С задней поверхности матки брюшина продолжается на небольшом протяжении также и на заднюю стенку влагалища, откуда она загибается на rectum. Глубокий брюшинный карман между rectum сзади и маткой и влагалищем спереди называется excavatio rectouterine. Вход в этот карман с боков ограничен складками брюшины, plicae rectouterinae, которые идут от задней поверхности шейки матки к боковой поверхности rectum. В толще этих складок, кроме соединительной ткани, заложены пучки гладких мышечных волокон, mm. rectouterini.

По боковым краям матки брюшина с передней и задней поверхностей переходит на боковые стенки таза в виде широких связок матки, ligg. lata uteri, которые по отношению к матке (ниже mesosalpinx) являются ее брыжейкой, mesometrium. Матка с ее широкими связками располагается поперечно в тазу и, как указывалось выше, делит полость его на два отдела — передний, excavatio vesicouterina, и задний — excavatio rectouterina.

Медиальный участок широкой связки меняет свое положение в связи с изменением положения матки, располагаясь при антеверсии (при пустом мочевом пузыре) почти горизонтально, причем передняя его поверхность обращена вниз, а задняя — вверх. Латеральный участок связки расположен более вертикально в сагиттальном направлении. В свободном крае широкой связки заложена маточная труба, на передней и задней поверхностях заметны валико-образные возвышения от lig. teres uteri и lig. ovarii proprium. К задней поверхности широкой связки прикреплен яичник посредством короткой брыжейки, mesovarium.

Треугольный участок широкой связки, заключенный между трубой сверху, mesovarium и яичником снизу, является брыжейкой трубы, mesosalpinx, состоящей из двух листков широкой связки, тесно прилежащих друг к другу. По сторонам шейки матки и верхнего участка влагалища листки широкой связки расходятся и между ними располагается скопление рыхлой жировой клетчатки, в которой лежат кровеносные сосуды. Эта клетчатка носит название parametrium.

От верхних углов матки, тотчас кпереди от труб, отходят по одной с каждой стороны круглые связки, lig. teres uteri. Каждая lig. teres направляется вперед, латерально и вверх к глубокому кольцу пахового канала. Пройдя через паховый канал, круглая связка достигает symphysis pubica и теряется своими волокнами в соединительной ткани mons pubis и большой половой губе.
Кроме соединительнотканных волокон, круглая связка содержит миоциты, продолжающиеся в нее с наружного мышечного слоя матки. Подобно processus vaginalis у мужчины, брюшина вместе с круглой связкой в эмбриональном периоде вдается на некотором протяжении в виде выпячивания в паховый канал; это выпячивание брюшины у взрослой женщины обычно облитерируется. Круглая связка аналогична gubernaculum testis мужчины.

Сосуды ( кровоснабжение ) матки. Иннервация ( нервы )матки

Матка получает артериальную кровь из a. uterina и частично из a. ovarica. A. uterina, питающая матку, широкую и круглую маточные связки, трубы, яичники и влагалище, идет в основании широкой маточной связки вниз и медиально, перекрещивается с мочеточником и, отдав к шейке матки и влагалищу a. vaginalis, поворачивает кверху и поднимается к верхнему утлу матки. Артерия расположена у бокового края матки и у рожавших отличается своей извилистостью. По пути она отдает веточки к телу матки. Достигнув дна матки, a. uterina делится на 2 конечные ветви: 1) ramus tubarius (к трубе) и 2) ramus ovaricus (к яичнику). Ветви маточной артерии анастомозируют в толще матки с такими же ветвями противоположной стороны. Они образуют богатые разветвления в tunica muscularis и в tunica mucosa, особенно развиваются при беременности.

Кровь от матки оттекает по венам, образующим plexus uterinus. Из этого сплетения кровь оттекает по трем направлениям: 1) в v. ovarica — из яичника, трубы и верхнего отдела матки; 2) в v. uterina — из нижней половины тела матки и верхней части шейки; 3) непосредственно в v. iliaca interna — из нижней части шейки и влагалища. Plexus uterinus анастомозирует с венами мочевого пузыря и plexus rectalis.

Отводящие лимфатические сосуды матки идут в двух направлениях: 1) от дна матки вдоль труб к яичникам и далее до поясничных узлов; 2) от тела и шейки матки в толще широкой связки, вдоль кровеносных сосудов к внутренним (от шейки матки) и наружным подвздошным (от шейки и тела) узлам. Отводящие лимфатические сосуды матки.

Иннервация матки происходит из plexus hypogastrics inferior (симпатическая) и от nn. splanchnici pelvini (парасимпатическая). Из этих нервов в области шейки матки образуется сплетение, plexus uterovaginalis.

Влагалище. Стенки влагалища.

Vagina, влагалище (от греч. colpos), представляет собой растяжимую мышечно-фиброзную трубку около 8 см длиной, которая верхним своим концом охватывает шейку матки, а нижним — отверстием, ostium vaginae, открывается в преддверие влагалища. Влагалище несколько изогнуто, с выпуклостью, обращенной назад. Продольная ось его с осью матки образует угол, открытый кпереди, обычно несколько больше 90°. Направляясь из полости таза к половой щели, влагалище проникает через мочеполовую диафрагму.

Передняя и задняя стенки влагалища, paries anterior et posterior, соприкасаются между собой и, так как шейка матки сверху вдается в полость влагалища, кругом шейки получается желобообразное пространство, называемое сводом, fornix vaginae, в котором различают более глубокий задний и плоский передний своды. В верхнем отделе влагалище несколько шире, чем в нижнем. Передняя стенка влагалища верхней частью прилежит к дну мочевого пузыря и отделена от него прослойкой рыхлой клетчатки, нижней соприкасается с мочеиспускательным каналом. Задняя стенка влагалища, верхняя четверть, покрыта брюшиной (прямокишечно-маточное углубление), ниже она прилежит к rectum и постепенно отходит от прямой кишки в области промежности.

Отверстие влагалища прикрыто у девственниц (virgo intacta) складкой слизистой оболочки — девственной плевой, hymen, оставляющей лишь небольшое отверстие. Девственная плева обычно имеет кольцевидную форму. Край складки иногда несет на себе вырезки, в результате чего получается hymen fimbriatus. В редких случаях hymen сплошь закрывает вход во влагалище (hymen imperforatus). У рожавших женщин от девственной плевы остаются лишь небольшие круговые возвышения — carunculae (hymenales).

Стенки влагалища состоят из трех оболочек: наружная — из плотной соединительной ткани; средняя, мышечная, тонкая, состоит из неисчерченных мышечных волокон, перекрещивающихся в различных направлениях, но в которых можно до известной степени различить внутренний циркулярный и наружный продольный слой. Внутренняя — слизистая-оболочка довольно толста и покрыта многочисленными поперечными складками, которые носят название rugae vaginales. Эти складки слагаются в два продольных валика, columnae rugarum, из которых один идет посередине передней стенки влагалища, а другой — посередине задней. Валики более выражены в нижнем отделе влагалища, вверху они исчезают. На детском влагалище складки простираются вплоть до верхнего конца.

Слизистая оболочка влагалища покрыта многослойным плоским эпителием и не имеет желез, местами встречаются отдельные лимфатические узелки, folliculi lymphatici vaginales. У живой женщины при кольпоскопии (визуальное исследование влагалища и шейки матки) слизистая оболочка этих органов имеет равномерную красноватую окраску с ясно заметными кровеносными сосудами. В норме не должно быть никаких дефектов или разрастаний.

 (557x600, 39Kb)
Схема развития внутренних женских половых органов: 1 — почка; 2 — мочеточник; 3 — матка; 4 — маточная труба; 5 — пароофорон (околояичник); 6 — придаток яичника; 7 — фимбрии (бахромки) маточной трубы; 8 — брюшное отверстие маточной трубы; 9 — везикулярные привески; 10 — яичник; 11 — собственная связка яичника; 12 — мезонефральный проток (редуцируется); 13 — влагалище; 14 — круглая связка матки; 15 — паховый канал; 16 — большие железы преддверия (бартолиновы железы); 17 — прямая кишка; 18 — отверстие влагалища; 19 — наружное отверстие мочеиспускательного канала; 20 — мочевой пузырь; 21 — аорта.

Сосуды ( кровоснабжение ) влагалища. Нервы ( иннервация ) влагалища.

Сосуды и нервы влагалища тесно связаны с сосудами и нервами матки. Артерии влагалища происходят из a. uterina, частично из a. vesicalis inferior, a. rectalis media и a. pudenda interna.
Вены влагалища образуют по боковым его сторонам богатые венозные сплетения, анастомозирующие с венами наружных половых органов и венозными сплетениями соседних органов таза. Отток крови из сплетений происходит в v. iliaca interna. Лимфа оттекает из влагалища по 3 направлениям: из верхней части — к nodi lymphatici iliaci interni; из нижней части — к nodi lymphatici inguinales; из задней стенки — к nodi lymphatici sacrales.

Нервы влагалища происходят из plexus hypogastrics inferior (симпатические), nn. splanchnici pelvini (парасимпатические) и к нижней части влагалища — из п. pudendus.

По материалам http://fireaid.megaobzor.com/Medical/Anatom/218.html
Рубрики:  Анатомичка

Комментарии (0)

Игры гормонов

Дневник

Суббота, 06 Декабря 2008 г. 17:46 + в цитатник
Игры гормонов

Слово „гормон“ часто вызывает фривольные ассоциации: у кого-то они выделяются в избытке, да ещё и где-то играют… Но о том, как гормоны играют, мы поговорим в другой раз. Сейчас — о том, как они работают.
 (450x559, 19Kb)
Эта удивительная управляющая система возникла в ходе эволюции, вероятно, чуть позже многоклеточности и одновременно с кровеносной системой. На самом деле даже одноклеточные существа небезразличны к химическим сигналам, приходящим извне, в том числе от других клеток. Но только у многоклеточных могла появиться изощрённая многоуровневая регуляция, известная под названием эндокринной системы.

Она управляет именно теми функциями организма, которые чаще всего бывают неподвластны воле и сознанию, от переработки питательных веществ до влюблённости, от роста рук, ног и туловища до колебаний настроения, от зачатия ребёнка до таинственной деятельности внутренних органов, которые многим своим хозяевам и по именам-то не известны… Вернее, наоборот: эти функции неподвластны воле, потому что управляются не нервной, а эндокринной системой. Специальные клетки в железах и тканях вырабатывают гормоны (от греч. hormamo — приводить в движение, побуждать). Эти вещества выделяются во внеклеточное пространство, в кровь и лимфу, а с их токами попадают в „мишени“ — органы и клетки и производят нужные эффекты. Примечательно, что они работают в очень низких концентрациях — до 10–11 моль/л.

В настоящее время описано и выделено более полутора сотен гормонов из разных многоклеточных организмов. По химическому строению их делят на три группы: белково-пептидные, производные аминокислот и стероидные гормоны. Первая группа — это гормоны гипоталамуса и гипофиза, поджелудочной и паращитовидной желёз и гормон щитовидной железы кальцитонин. Некоторые гормоны, например фолликулостимулирующий и тиреотропный, представляют собой гликопротеиды — пептидные цепочки, „украшенные“ углеводами.

 (300x461, 9Kb)

Производные аминокислот — это амины, которые синтезируются в мозговом слое надпочечников (адреналин и норадреналин) и в эпифизе (мелатонин), а также иодсодержащие гормоны щитовидной железы трииодтиронин и тироксин (тетраиодтиронин).

 (350x279, 6Kb)

Достигнув мишени, гормон связывается с рецептором — белковой молекулой, одна часть которой отвечает за связывание, приём сигнала, другая — за передачу эффекта „по эстафете“ внутрь клетки. (Как правило, при этом изменяется активность каких-либо ферментов.) Рецепторы гидрофильных гормонов находятся на мембранах клеток-мишеней, а липофильных — внутри клеток, поскольку липофильные молекулы могут проникать через мембрану. Сигналы от рецепторов принимают так называемые вторичные мессенджеры, или посредники, куда менее разнообразные, чем сами гормоны. Здесь мы встречаемся с такими знакомыми персонажами, как циклоАМФ, G-белки, протеинкиназы — ферменты которые навешивают фосфатные группы на белки, тем самым порождая новые сигналы.

 (300x296, 4Kb)

Теперь снова поднимемся с клеточного уровня на уровень органов и тканей. С этой точки зрения — всё начинается в гипоталамусе и гипофизе. Функции гипоталамуса многообразны и даже сегодня не до конца изучены, но, вероятно, все согласны в том, что гипоталамо-гипофизарный комплекс — центральная точка взаимодействий нервной и эндокринной систем. Гипоталамус — это и центр регуляции вегетативных функций, и „колыбель эмоций“. В нём вырабатываются рилизинг-гормоны (от англ. release — высвобождать), они же либерины, стимулирующие выброс гипофизом гормонов, а также статины, тормозящие этот выброс.

Гипофиз — эндокринный орган, находящийся на внутренней поверхности мозга. Он вырабатывает тропные гормоны (греч. tropos — направление), которые называются так потому, что направляют работу других, периферических эндокринных желез — надпочечников, щитовидной и паращитовидной, поджелудочной, половых желёз. Причём эта схема насыщена обратными связями, например, женский гормон эстрадиол, попадая в гипофиз, регулирует секрецию тройных гормонов, управляющих его собственной секрецией. Поэтому количество гормона, во-первых, не бывает чрезмерным, а во-вторых, различные эндокринные процессы тонко согласуются между собой.

 (300x124, 2Kb)

Особого внимания заслуживает временная регуляция. „Встроенные часы“ нашего организма — это эпифиз, шишковидная железа, вырабатывающая гормон мелатонин (производное аминокислоты триптофана). Перепады концентрации этого вещества создают у человека чувство времени, а от характера этих перепадов зависит, будет ли человек „совой“ или „жаворонком“. Концентрация очень многих гормонов также циклически изменяется в течение суток. Вот почему эндокринологи иногда требуют от пациентов собирать суточную мочу (сумма может оказаться более постоянной и характерной величиной, чем слагаемые), а иногда, если нужно оценить динамику, берут анализы каждый час.

Соматотропный гормон (СТГ) оказывает действие на весь организм — он стимулирует рост и соответственно регулирует обменные процессы. Опухоли гипофиза, вызывающие сверхпродукцию этого гормона, становятся причиной гигантизма у человека и животных. Если опухоль возникает не в детстве, а позднее, развивается акромегалия — неравномерное разрастание скелета, в основном за счёт хрящевых участков. Недостаточность СТГ, напротив, приводит к карликовости, или гипофизарному нанизму. К счастью, современная медицина это лечит. Если врач установит, что причина слишком медленного роста ребёнка (даже не обязательно карликовости, а просто отставания от сверстников) именно в низкой концентрации СТГ, и сочтёт нужным прописать уколы гормона, то рост нормализуется. А вот рассказ советского фантаста Александра Беляева „Человек, нашедший своё лицо“ — всё-таки сказка: взрослому человеку гормональные инъекции вырасти не помогут.

В гипофизе вырабатывается и пролактин, он же лактогенный и лютеотропный гормон (ЛТГ), отвечающий за лактацию в период кормления грудью. Кроме того, в гипофизе синтезируются липотропины — гормоны, стимулирующие вовлечение жира в энергетический обмен. Эти же гормоны являются предшественниками эндорфинов — „пептидов радости“. Меланоцит-стимулирующие гормоны гипофиза (МСГ) регулируют синтез пигментов в коже и вдобавок, судя по некоторым данным, имеют какое-то отношение к механизмам памяти. Ещё два важных гормона — вазопрессин и окситоцин; первый называют также антидиуретическим гормоном, он регулирует водно-солевой обмен и тонус артериола; окситоцин отвечает за сократительную активность матки у млекопитающих и вместе с пролактином — за молоко. Его используют для стимуляции родов.

 (350x254, 5Kb)

Между прочим, идея, положенная Михаилом Булгаковым в основу „Собачьего сердца“, — пересадка человеческого гипофиза в мозг собаки не только перестраивает тело животного, превращая его в подобие человеческого, но и передаёт подопытному такие качества донора, как хамство и алкоголизм, — с точки зрения физиологии начала XX века весьма остроумна. СТГ заставил Шарика вырасти величиной с человека, тропные гормоны перенастроили метаболизм, эндорфины — эмоциональный фон… словом, если и не вся незабываемая личность Клима Чугункина досталась бедному псу, то немалая её часть! Конечно, современные нейрофизиологи понимают, что гипофиз не может быть вместилищем классовой ненависти и других сложных инстинктов, зато всё остальное — чистая правда.

Теперь подробнее о тропных гормонах, которые вырабатывает гипофиз, и об их мишенях.
Надпочечники — парные органы, прилегающие к верхушкам почек. В каждом из них выделяют две самостоятельные железы: кору (substantia corticalis) и мозговое вещество. Цель адренокортикотропного гормона (АКТГ, он же кортикотропин) — кора надпочечников. Здесь синтезируются кортикостероиды. Глюкокортикоиды (кортизол и другие) получили своё название от глюкозы, потому что их деятельность тесно связана с углеводным обменом. Кортизол — стрессовый гормон, он защищает организм от любых резких изменений физиологического равновесия: воздействует на метаболизм углеводов, белков и липидов, на электролитный баланс. Впрочем, последнее больше по ведомству минералокортикоидов: их главный представитель, альдостерон, регулирует обмен ионов натрия, калия и водорода.

Кортикостероиды и их искусственные аналоги широко применяют в медицине. У глюкокортикоидов есть ещё одно важное свойство: они подавляют воспалительные реакции и уменьшают образование антител, поэтому на их основе делают мази для лечения кожных воспалений и зуда. Кстати, некоторые популярные среди любителей нетрадиционной медицины кожные мази китайского происхождения помимо растительных экстрактов содержат те же глюкокортикоиды. Это прямым текстом написано на упаковке, но покупатели не всегда обращают внимание на сложные биохимические слова. Хотя, возможно, для лечения дерматита лучше бы приобрести банальный фторокорт, он, по крайней мере, разрешён российской фармакопеей…

В мозговом слое надпочечников синтезируются катехоламины — адреналин и норадреналин. То, что адреналин — синоним стресса, сегодня знают все. Он отвечает за мобилизацию адаптивных реакций: действует и на обмен веществ, и на сердечно-сосудистую систему, и на углеводный и жировой обмен. Катехоламины — самые простые по строению и, очевидно, древнейшие сигнальные вещества, недаром они найдены даже у Protozoa. Но особенную роль нейромедиаторов они выполняют только у многоклеточных. Об этом поговорим в другой раз.

Третья группа как раз и отвечает за легкомысленную репутацию, которую гормоны приобрели в народе: это стероидные гормоны, которые синтезируются в коре надпочечников и в половых железах. Взглянув на их общую формулу, легко догадаться, что их биосинтетический предшественник — холестерин. Стероиды отличаются по количеству атомов углерода в молекуле: С21 — гормоны коры надпочечников и прогестерон, С19 — мужские половые гормоны (андрогены и тестостерон), С18 — женские половые гормоны (эстрогены).

Гидрофильные молекулы гормонов, например белково-пептидные, обычно транспортируются кровью в свободном виде, а стероидные гормоны или иодсодержащие гормоны щитовидной железы — в виде комплексов с белками плазмы крови. Кстати, белковые комплексы могут также выступать и в роли резервного пула гормона, при разрушении свободной формы гормона комплекс с белком диссоциирует и таким образом поддерживается нужная концентрация сигнальной молекулы.

Поджелудочная железа — одновременно экзокринная и эндокринная, то есть работает и вовне, и внутрь: ферменты выделяет в двенадцатиперстную кишку (содержимое пищеварительного тракта биологи рассматривают как внешнюю по отношению к организму среду), а гормоны — в кровь. В специальных железистых образованиях, островках Лангерганса, альфа-клетки вырабатывают глюкагон — регулятор углеводного и жирового обмена, а бета-клетки — инсулин. Этот гормон был открыт русским учёным Л.В. Соболевым (1902). Впервые выделили инсулин канадские физиологи Фредерик Бантинг, Чарльз Бест и Джон Маклеод (1921). Бантинг и Маклеод в 1923 году получили за это Нобелевскую премию. (Беста, занимавшего должность лаборанта, в число лауреатов не включили, и возмущенный Бантинг отдал помощнику половину своей награды.) Структурная единица инсулина — мономер с молекулярной массой около 6000, причём в молекулу объединяется от двух до шести мономеров.

 (500x233, 8Kb)

Последовательность расположения аминокислот в мономере инсулина (то есть его первичную структуру) впервые установил английский биохимик Фредерик Сэнгер (1956, Нобелевская премия по химии 1958 года), а пространственную структуру — опять же англичанка и тоже нобелевская лауреатка Дороти Ходжкин (1972). Каждый мономер содержит 51 аминокислоту, которые располагаются в виде двух пептидных цепей — А и В, соединённых двумя дисульфидными мостиками (–S–S–).

 (400x197, 21Kb)

Читателю „Химии и жизни“ представлять инсулин не надо. Этот гормон снижает содержание сахара в крови, задерживая распад гликогена и синтез глюкозы в печени и в то же время повышая проницаемость клеточных мембран для глюкозы. Он же способствует усвоению этого топлива, стимулирует синтез белков и жиров за счёт углеводов. Таким образом, он отвечает за то, чтобы клетки всасывали глюкозу из крови и хорошо её „переваривали“.

Нехватка инсулина — повышенный уровень сахара в крови и „голодные“ клетки, ткани и органы, иначе говоря, сахарный диабет. Наверно, это самое знаменитое эндокринное заболевание. В частности, потому, что инсулин — первый искусственно синтезированный пептидный гормон, который пришёл на смену препаратам, получаемым из поджелудочных желёз убойного скота. Сейчас медики мечтают о ещё более радикальных успехах — например, ввести в организм больного стволовые клетки, вырабатывающие инсулин. Введение такой методики в клиническую практику — дело непростое и небыстрое, но инъекции инсулина обеспечивают нормальную жизнь множеству людей уже сегодня.

Тиреотропный гормон гипофиза (ТТГ) действует на щитовидную железу (glandula thyroidea), которая у нас, людей, находится в шее, под гортанью. Её гормоны — тироксин и трииодтиронин, регуляторы обмена, синтеза белка, дифференцировки тканей, развития и роста организма. Их биохимический предшественник — аминокислота тирозин. Поскольку молекулы гормонов щитовидной железы содержит иод, дефицит этого элемента в пище приводит к дефициту гормонов. Клинические проявления — разрастание железы (зоб) при снижении её функции. Токсический зоб, он же базедова болезнь, или тиреотоксикоз, напротив, связан с гиперфункцией железы и избыточным содержанием гормонов.

В щитовидной железе синтезируется также гормон, регулирующий обмен кальция и фосфора, кальцитонин. И ещё один гормон, регулирующий обмен этих же элементов, вырабатывают парные паращитовидные (рага-thyroideae) железы — он так и называется парат-гормон. Эти гормоны вместе с витамином D отвечают за рост и ремонт костной ткани.

Гонадотропные гормоны гипофиза — лютеинизирующий гормон (ЛГ), гонадотропин, фолликулостимулирующий гормон ФСГ регулируют деятельность половых желёз. (Наконец-то добрались и до них.) Тестостерон — основной андроген — вырабатывают семенники у мужчин, а у женщин — кора надпочечников и яичники. На стадии внутриутробного развития этот гормон у мужчин направляет дифференциацию половых органов, а в период полового созревания — развитие вторичных половых признаков, а также формирование мужской сексуальной ориентации. У взрослых тестостерон обеспечивает нормальное функционирование половых органов.

Кстати, семенники эмбриона мальчика вырабатывают ещё и фактор регрессии мюллеровых каналов — гормон, блокирующий развитие женской половой системы. Таким образом, в эмбриональном периоде развитие мальчика сопровождается химическими сигналами, которых нет у девочек, и отсюда в конечном счёте возникают все остальные различия. Как шутят по этому поводу специалисты, „чтобы получился мальчик, надо что-то сделать, если не делать ничего, получится девочка“.

Эстрогены у женщин синтезируются в яичниках. Эстрадиол, один из основных эстрогенов, отвечает за формирование вторичных женских половых признаков и участвует в регуляции месячного цикла.
Прогестины (прогестерон и его производные) нужны и для регуляции цикла, и для нормального протекания беременности. Без оплодотворения в определённый период цикла и в первые 12 недель прогестерон синтезируют клетки жёлтого тела яичников, а затем — плацента. Прогестерон также секретируется в небольших количествах корой надпочечников и у мужчин — семенниками. Что характерно, прогестерон — промежуточное звено в синтезе андрогенов. В яичниках синтезируется также и релаксин — гормон родов, отвечающий, например, за расслабление связок таза.

Безусловно, достижения медицинской эндокринологии и в этой области огромны. Сегодня мы можем лечить многие формы бесплодия, корректировать отклонения в развитии, век назад считавшиеся неизлечимыми. Но профессор Преображенский в „Собачьем сердце“ справедливо выделял в эндокринологии научную и коммерческую составляющие. Деньги приносит не только омоложение (где эндокринологию к концу века сильно потеснила хирургия) и даже не лечение импотенции. Препараты для наращивания мышечной массы на основе стероидов, явно вредные, но, к сожалению, до сих пор востребованные, мощная индустрия противозачаточных средств. Куда там яичникам обезьяны.

Современные таблетки, те, что полагается пить по одной в день в течение месяца, по сути, накладывают жёсткую „маску“ на естественный гормональный фон, блокируя изменения, которые в норме способствовали бы развитию беременности. А таблетки типа „next morning“ („на следующее утро“) — разовый гормональный удар, прерывающий процесс в самом начале. Так или иначе, женские пероральные контрацептивы сегодня считаются одним из самых надёжных средств предохранения от беременности и по объёму продаж вряд ли уступают виагре.

 (350x267, 10Kb)

Но пожалуй, ни одно вещество, содержащееся в организме человека, не вызывает у прекрасного пола столько эмоций, сколько хорионический гонадотропин. Плацента плода тоже может рассматриваться как эндокринный орган: она синтезирует и прогестин, и релаксин, и многие другие гормоны и гормоноподобные вещества. Будущий ребёнок постоянно обменивается сигналами с организмом матери, формируя подходящие для себя условия. Одна из ранних попыток зародыша наладить связь с мамой — как раз этот гликопротеин, хорионический гонадотропин, он же ХГТ или ХГ. Наличие его в крови или моче женщины означает, что пациентка в положении, а отсутствие — что беременность, увы (или ура), не наступила.

В середине прошлого века этот судьбоносный анализ был совсем варварским: мочу женщины вводили мышам и смотрели, не проявились ли у зверушек симптомы беременности. Теперь он отличается элегантной простотой не надо даже идти к врачу, достаточно купить в аптеке тест на беременность, он же „стрип“, — узкую полосочку в конверте, по сути, миниатюрную хроматографическую бумажку. Трудно найти другой пример, когда совершенствование рутинной методики биохимического анализа так сильно повлияло бы на человеческие судьбы. Сколько благополучно сохранённых беременностей и сколько вовремя сделанных абортов… Ну да, вне всяких сомнений, аборт — это плохо. Но устроить так, чтобы люди не делали глупостей, не в компетенции медицины. С этим — к психологам, педагогам и экономистам. Врачи и учёные могут лишь минимизировать вред, наносимый глупостью.

Впрочем, не будем о грустном. Коль скоро мы умеем подбирать ключи к самой таинственной управляющей системе собственного организма, наверное, когда-нибудь мы научимся и пользоваться ими разумно.


по материалам статьи Е. Котиной - Серьёзные игры гормонов „Химия и жизнь — XXI век“
Рубрики:  Анатомичка

Комментарии (0)

АНАТОМИЧКА,Endocrinologia,Железы внутренней секреции, ч.24

Дневник

Суббота, 06 Декабря 2008 г. 17:19 + в цитатник
ЭНДОКРИННЫЕ ЖЕЛЕЗЫ (Endocrinologia)

ЩИТОВИДНАЯ ЖЕЛЕЗА

Щитовидная железа расположена в передней области шеи, весит 30-60 г и состоит из двух долей, соединенных перешейком.
 (229x194, 5Kb)

Щитовидная железа вырабатывает и секретирует в кровь тиреоидные гормоны — тироксин и трийодтиронин, оказывающие мощное регулирующее влияние на основные функции организма — его рост, развитие и обмен веществ (ускоряет катаболические процессы, что ведет к повышению температуры, высокому расходу питательных веществ).

 (482x600, 39Kb)
Щитовидная железа (glandula thyroidca). Схема анатомических взаимоотношений щитовидной железы с трахеей и гортанью: 1 — трахея; 2 — правая доля щитовидной железы; 3 — долька; 4 — перешеек; 5 — пирамидальная доля; 6 — подвешивающая связка; 7 — перстневидный хрящ; 8 — перстне-щитовидная мышца; 9 — средняя перстне-щитовидная связка; 10 — щитовидный хрящ.

В первые недели после рождения инкреция железы еще низка, но затем она возрастает к периоду половой зрелости и в последующем онтогенезе меняется мало, несколько снижаясь к старости. Гистологические изменения в пожилом и старческом возрасте заключаются в понижении диаметра фолликулов, атрофии секреторного эпителия. В старости же в большинстве случаев понижается поглощение радиоактивного йода. С возрастом изменяется не только количество выработанного гормона, но и восприимчивость тканей к его действию.

В первые месяцы жизни опытные животные и человек слабо реагируют на введение тироксина. С этой низкой реактивностью тканей молодых животных совпадает еще недостаточная активность самой железы. По-видимому, в раннем возрасте высокий собственный метаболизм не нуждается во «взвинчивании» его гормонами. К старости организм, хотя и сохраняет большую чувствительность к гормону, уже не способен поднять уровень своих окислительных процессов.

Внутри железы имеются небольшие полости, или фолликулы, наполненные слизистым веществом, содержащим гормон тироксин. В состав гормона входит йод. Этот гормон влияет на обмен веществ, особенно жиров, на рост и развитие организма, усиливает возбудимость нервной системы, деятельность сердца. При разрастании ткани щитовидной железы количество гормона, поступающего в кровь, увеличивается, что приводит к заболеванию, которое называется базедовой болезнью. У больного повышается обмен веществ, что выражается в сильном исхудании, повышенной возбудимости нервной системы, усиленном потоотделении, быстрой утомляемости, пучеглазии.

При пониженной функции щитовидной железы возникает заболевание микседема, проявляющееся в слизистом отеке тканей, замедлении обмена веществ, задержке роста и развития, ухудшении памяти, нарушении психической деятельности. Если это случается в раннем детском возрасте, развивается кретинизм (слабоумие), характеризующийся умственной отсталостью, недоразвитием половых органов, карликовым ростом, непропорциональным строением тела.

В горных районах встречается заболевание, известное под названием эндемический зоб, возникающее вследствие недостатка йода в питьевой воде. При этом ткань железы, разрастаясь, на некоторое время возмещает дефицит гормона, но и в этом случае его может быть недостаточно для организма. В целях профилактики эндемического зоба жителям соответствующих зон поставляют обогащенную йодом поваренную соль или добавляют ее в воду.

ПАРАЩИТОВИДНЫЕ ЖЕЛЕЗЫ

Паращитовидные (околощитовидные железы) - четыре небольших тельца, расположенные позади боковых долей щитовидной железы, в ее капсуле, по два с каждой стороны. Таким образом, различают верхние и нижние околощитовидные железы. К концу внутриутробного развития околощитовидные железы являются вполне сформированными анатомическими образованиями, окруженными соединительно-тканной капсулой. После рождения их масса нарастает: у мужчин — до 30 лет, а у женщин — до 40-50 лет. В процессе старения ткань околощитовидных желез частично замещается жировой и соединительной.

Паратгормон относится к гормонам пептидной природы. Он регулирует уровень кальция в крови, способствуя распаду костной ткани и выведению в кровь кальция. Функция желез активируется на 3-4 неделе постнатальной жизни, достигая максимума в 6-10 лет, при этом наряду с прогрессивным изменением тканей встречаются и признаки регресса (появление оксифильных клеток и накопление коллоида). К 50 годам отмечается вытеснение паренхимы железы жировой тканью. Падает с возрастом и способность клеток активировать паратгормон. При гипофункции паращитовидных желез возникает заболевание тетания , характерным симптомом которой являются приступы судорог. В крови снижается содержание кальция, что ведет к размягчению костей. При избытке кальция в крови он откладывается в необычных для него местах — в сосудах, аорте, почках.
 (200x303, 81Kb)
Паращитовидные (околощитовидные) железы (giandulae parathyroidei). Вид сзади. 1 - средний констриктор (сжиматель) глотки; 2 - нижний констриктор глотки; 3 -правая верхняя околощитовидная железа; 4 - правая доля щитовидной железы; 5 - правая нижняя околощитовидная железа; 6 - трахея; 7 - пищевод; 8 - левая нижняя околощитовид-ная железа; 9 - левая доля щитовидной железы; 10 - левая верхняя околощитовидная железа.

НАДПОЧЕЧНИКИ

Надпочечники - парные железы, расположенные у верхнего края почек. Их масса — около 12 г каждая, вместе с почками они покрыты жировой капсулой. В них различают корковое, более светлое вещество, и мозговое, темное. Надпочечники — парный орган в виде телец, расположенный над почками. Масса каждого из них составляет 8-10 г.

Надпочечники состоят из двух совершенно самостоятельных частей: темного мозгового вещества, лежащего внутри, и бледного наружного слоя — коры. Из коркового вещества надпочечников в настоящее время выделено 50 стероидных соединений. Обнаружено 8 биологически активных кортикостероидов, однако истинными гормонами являются кортизол (гидрокортизон), кортикостерон, альдостерон и др. В паренхиматозных клетках мозгового вещества надпочечников образуются адреналин и норадреналин.

В корковом слое надпочечников вырабатываются кортикостероиды или кортикоиды. Их 3 группы:

1) глюкокортикоиды — гормоны, действующие на обмен веществ, особенно на обмен углеводов. Сюда относятся гидрокортизон, кортизол и кортикостерон. Отмечена высокая способность глюкокортикоидов подавлять образование иммунных тел, что позволило использовать эти гормоны при трансплантации органов (сердца, почек и др.) с целью снижения неблагоприятного иммунного ответа.

2) минералокортикоиды, регулирующие минеральный и водный обмен.

3) андрогены и эстрогены — аналоги мужских и женских половых гормонов. Эти гормоны менее активны, чем гормоны половых желез и вырабатываются в небольших количествах.
 (300x281, 8Kb)
Надпочечная железа (надпочечник, левый) (glandula suprarenalis). Вид спереди. 1 - надпочечник; 2 - нижняя надпочечниковая вена; 3 - нижняя надпочечниковая артерия; 4 -почечная артерия (левая); 5 - почка (левая); 6 - левая яичковая вена; 7 - мочеточник; 8 - верхняя брыжеечная артерия; 9 - почечная вена (левая); 10 - яичковая артерия; 11 - правая яичковая вена; 12 - нижняя полая вена; 13 - чревный ствол; 14 - аорта; 15 - средняя надпочечниковая артерия; 16 - нижняя диафрагмальная артерия (левая); 17 - верхние надпочечниковые артерии.

Мозговая часть надпочечников вырабатывает гормоны адреналин и норадреналин. Эти гормоны — важная часть адаптационно-трофической системы, образованной гипоталамо-гипофизарно-надпочечниковым комплексом, и наиболее известны нам как стрессорные гормоны.

 (318x400, 49Kb)
Часть поперечного разреза надпочечника человека: 1 — капсула; 2 — клубочковая зона коры; 3 — пучковая зона коры; 4 — сетчатая зона коры; 5 — мозговое вещество; 6 — вена мозгового вещества; 7 и 8 — смещенные участки коркового вещества

Инкреция кортикостероидов корковым слоем надпочечников возникает в эмбриогенезе сравнительно рано — на 7-8 неделе внутриутробного развития. Общий уровень выработке кортикостероидов нарастает сначала медленно, а затем быстро, достигая максимума в 20 лет, а затем падает к старости. При этом быстрее всего к старости уменьшается выработка минералокортикоидов, несколько медленнее — андростероидов и еще медленнее — глюкокортикоидов.

Адреналин и норадреналин появляются в мозговом веществе надпочечников очень рано. Уже при рождении уровень инкреции адреналина в надпочечниках сопоставим с уровнем взрослого человека. (Выделение катехоламинов в моче у молодых, зрелых и пожилых людей почти не изменяется с возрастом).

В корковом слое вырабатываются несколько гормонов — кортикостероидов, оказывающих влияние на солевой и углеводный обмены, способствующих отложению гликогена в клетках печени и поддерживающих постоянную концентрацию глюкозы в крови. При недостаточной функции коркового слоя развивается Аддисонова болезнь, сопровождающаяся мышечной слабостью, одышкой, потерей аппетита, уменьшением концентрации в крови сахара, понижением температуры тела. Кожа при этом приобретает бронзовый оттенок — характерный признак данного заболевания.

В мозговом слое надпочечников вырабатывается гормон адреналин. Его действие многообразно: он увеличивает частоту и силу сердечных сокращений, повышает кровяное давление (при этом просвет многих мелких артерий сужается, а артерии головного мозга, сердца и почечных клубочков расширяются), усиливает обмен веществ, особенно углеводов, ускоряет превращение гликогена (печени и работающих мышц) в глюкозу, в результате чего работоспособность мышц восстанавливается.

ПОДЖЕЛУДОЧНАЯ ЖЕЛЕЗА

Поджелудочная железа располагается позади желудка, обычно на уровне первого и второго поясничных позвонков, и занимает пространство от двенадцатиперстной кишки до ворот селезенки.
 (636x311, 188Kb)

Длина ее — 10-23 см, ширина — 3-9 см, толщина — 2-3 см, масса — 70-100 г. В поджелудочной железе различают три отдела: головку, тело и хвост.

 (675x379, 244Kb)

Она функционирует как смешанная железа, гормон которой - инсулин вырабатывается клетками островков Лангерганса , которые выполняют эндокринную функцию поджелудочной железы.
 (260x285, 15Kb)
Инсулин действует главным образом на углеводный обмен, оказывая действие, противоположное адреналину. Основная функция инсулина — сохранение углеводов в организме и пополнение запасов глюкагона. При снижении выработки инсулина большая часть глюкозы выводится из организма с мочой (диабет).

Альфа-клетки вырабатывают гормон глюкагон , который способствует превращению гликогена печени в глюкозу крови, в результате чего увеличивается количество сахара в крови. Инсулин вырабатывается бета-клетками островков поджелудочной железы. Он способствует отложению гликогена в печени и уменьшению количества сахара в крови. При недостаточной функции поджелудочной железы, появляющейся в результате ее заболевания или частичного удаления, развивается тяжелое заболевание —сахарный диабет.

Инсулин регулирует углеводный обмен, т.е. способствует усвоению клетками глюкозы, поддерживает ее постоянство в крови, переводя глюкозу в гликоген, который откладывается в печени и мышцах. Действие глюкагона противоположно инсулину: при недостатке глюкозы в крови глюкагон способствует превращению гликогена в глюкозу. При пониженной функции островков Лангерганса нарушается обмен углеводов, а затем белков и жиров. Содержание глюкозы в крови возрастает с 0,1 до 0,4%, она появляется в моче, а количество мочи увеличивается до 8-10 л. Это заболевание называется сахарным диабетом.

Инсулиновый аппарат поджелудочной железы развивается очень рано. С возрастом увеличивается общее количество островков Лангерганса, но при пересчете на единицу массы их количество, наоборот, значительно снижается по мере старения. Было также отмечено и возрастное уменьшение гормона в эндокринной железе.

Особенно ярко заметна высокая толерантность к сахарным нагрузкам детей и юношей, которая несколько снижается в зрелом возрасте и очень существенно снижена в старости. Поэтому является обоснованным считать употребление больших количеств сахара в молодости и необходимо ограничение его потребления в старости, так как нарастает угроза возникновения диабета.

Деятельность всех желез внутренней секреции взаимосвязана: гормоны передней доли гипофиза способствуют развитию коркового вещества надпочечников, усиливают секрецию инсулина, влияют на поступление в кровь тироксина и на функцию половых желез.

Работу всех желез внутренней секреции регулирует центральная нервная система, в которой находится ряд центров, связанных с функцией желез. В свою очередь гормоны влияют на деятельность нервной системы. Нарушение взаимодействия этих двух систем сопровождается серьезными расстройствами функций органов и организма в целом.

ЭПИФИЗ

Эпифиз, или шишковидное тело - овальное железистое образование, относящееся к промежуточному мозгу.
 (300x394, 11Kb)

Эпифиз (epiphysis). Вид сверху. 1 - внутренние мозговые вены; 2 - третий желудочек; 3 - эпифиз; 4 - большая вена мозга; 5 - сосудистое сплетение бокового желудочка; 6 - таламус; 7 - столбы свода мозга.

Эпифиз расположен между зрительными буграми и четверохолмием. Длина его — 8 мм, вес, в среднем, — 0,118 г, ширина — 4-6 мм. Паренхиму эпифиза составляют крупные светлые клетки, состоящие из цитоплазмы и ядер с базофильной зернистостью и содержащие нуклеиновые кислоты РНК и ДНК.

Инволюция эпифиза начинается с 4-5-летнего возраста. После 8 лет в эпифизе происходит обызвествление, состоящего из органической основы, карбоната и фосфата кальция и магния. Эпифиз считают железой внутренней секреции, однако роль его в организме еще полностью не изучена. Он участвует в регуляции обмена фосфора, калия, кальция и магния, а также водно-солевого обмена. Основным гормоном эпифиза является мелатонин — ингибитор развития и функционирования половых желез.

Обнаружено, что поражение эпифиза у детей сопровождается преждевременным половым созреванием, то есть ему принадлежит сдерживающее влияние на развитие половых желез.

Таким образом, эпифиз раннего детства может выполнять свою сдерживающую функцию, продуцируя повышенное количество мелатонина. Максимальная активность в раннем детстве (5-7 лет) и именно к этому периоду относится максимальное сдерживающее влияние. Позднее эпифиз подвергается значительной инволюции, правда весьма неравномерной.

Есть гипотеза, что эпифиз является органом ясновидения www.prosvetlenie.org/mystic/1/20.html.

ЖЕЛУДОЧНО-КИШЕЧНЫЕ ГОРМОНЫ

В слизистой оболочке желудка и кишечника имеются не собственно железы, а разрозненные клетки эндокринного типа. Выделяемые ими желудочно-кишечные гормоны регулируют пищеварительные процессы, активизируя выделение различных соков или вызывая угнетающий эффект.
 (699x419, 282Kb)
Гастрин стимулирует слизистую оболочку желудка, когда в нее попадает пищевой комок.

Его антагонист энтерогастрон, вырабатываемый в слизистой оболочке двенадцатиперстной кишки, сокращает выделение соков и частоту перистальтических движений.

В двенадцатиперстной кишке вырабатываются панкреозимин и секретин , стимулирующие выделение поджелудочного сока, а также холецистокинин, способствующий выбросу желчи при поступлении жирных веществ.

И, наконец, энтерокинин , вырабатываемый в слизистой оболочке кишечника, стимулирует выделение сока в этом органе.


с использованием материалов книги Григория Белоголовского «АНАТОМИЯ ЧЕЛОВЕКА»

www.medarticle.moslek.ru/articles/40206.htm

www.tryphonov.ru/tryphonov2/terms2/pancr.htm
Рубрики:  Анатомичка

Комментарии (0)

АНАТОМИЧКА,Endocrinologia,Железы внутренней секреции, ч.23

Дневник

Пятница, 05 Декабря 2008 г. 19:43 + в цитатник
ЭНДОКРИННЫЕ ЖЕЛЕЗЫ (Endocrinologia)

ПОЛОВЫЕ ЖЕЛЕЗЫ

Влияние, которое оказывает на организм удаление половых желез, известно давно, так как кастрация скота применялась еще в древности для повышения рабочих качеств домашнего скота и увеличения его веса. Однако только в середине XIX века было точно установлено, что влияние половых желез на волосяной покров, рост, телосложение и поведение зависит от поступления в кровь особых веществ, вырабатываемых семенниками особей мужского пола и яичниками особей женского пола. Эти вещества - мужской гормон тестостерон и его производное андростерон и женский гормон эстрадиол.

 (200x294, 5Kb)
Яичко (testis). Мужская половая железа. 1 - семенной канатик; 2 - фасция мышцы, поднимающей яичко; 3 - внутреняя семенная фасция. 4 - лозовидное венозное сплетение; 5 - влагалишная оболочка яичка (серозная); 6 - головка придатка яичка; 7 - привесок придатка яичка; 8 - привесок яичка; 9 - яичко; 10 - мошонка; 11 - хвост придатка яичка; 12 -семявыносящий проток.

 (300x213, 6Kb)
Яичник (ovarium). Женская половая железа. 1 - маточная труба; 2 - надъяичник (придаток яичника); 3 - яичниковая артерия; 4 - бахромка трубы (маточной); 5 -связка, подвешивающая яичник; 6 - артерии и вены яичника; 7 - яичник; 8 - круглая связка матки; 9 - широкая связка матки; 10 - маточные вены; 11 - маточная артерия; 12 - влагалише; 13 - матка; 14 - собственная связка яичника; 15 - яичниковая ветвь маточной артерии.

Половые железы выполняют две функции: они вырабатывают половые клетки и половые гормоны. В мужских половых железах — семенниках — образуются сперматозоиды, а в специальных интерстициальных клетках вырабатывается половой гормон — тестостерон. В яичниках образуются яйцеклетки и гормоны. В созревающем фолликуле развивается яйцеклетка и выделяется гормон фолликулин, или эстрадиол. На месте лопнувшего фолликула развивается желтое тело, которое вырабатывает второй гормон - прогестерон.

Этот гормон иначе называют гормоном беременности. Мужской половой гормон - тестостерон - стимулирует развитие вторичных половых признаков (рост бороды, характерное распределение волос на теле, развитие мускулатуры и др.) и всего облика, свойственного мужчине.

Андрогены обуславливают развитие полового аппарата и рост половых органов, развитие половых признаков: тембра голоса, строения гортани, скелета, мускулатуры и др.

Совместно с ФСГ гипофиза тестостерон активирует сперматогенез. Гиперфункция семенников в раннем возрасте ведет к раннему половому созреванию, быстрому росту тела и развитию вторичных половых признаков. Поражение семенников или кастрация затормаживает или останавливает эти процессы.

Гиперфункция яичников вызывает раннее половое созревание с выраженными вторичными половыми признаками и менструацией. Описаны случаи раннего полового созревания в 4-5 лет!

Количество половых гормонов, обнаруживаемых в крови, очень низкое в первые дни жизни, и постепенно увеличивается, ускоряя темпы развития, особенно в период второго детства (8-12 лет у мальчиков и 8-11 — у девочек), подростковом (13-16 лет мальчики, 12-15 лет девочки) и юношеском (17-21 год юноши и 16-20 лет девушки). В данных возрастных периодах деятельность половых желез имеет важное значение для темпов роста, формообразования и интенсивности протекания обмена веществ, то есть может выступать в роли ведущего фактора развития. По мере старения организма, чаще всего к 70 годам, наблюдается падение инкреции гонад, имеющее важное значение в процессе общего «увядания» организма.

Как показывают данные исследований, наиболее значительные перестройки организма, и в частности, его эндокринной системы происходят в период полового созревания. В ходе этого периода человек достигает биологической зрелости. Под влиянием гормонов эндокринных желез происходит окончательное формирование половых органов и желез, развиваются вторичные половые признаки, по которым один пол отличается от другого.

Период полового созревания сравнительно продолжителен. При этом происходит неравномерное развитие различных функциональных систем, нарушается гармония в деятельности внутренних органов. Сердце опережает в росте кровеносные сосуды, вследствие чего повышается артериальное давление, что снижает в конечном счете эффективность работы самого сердца и нередко приводит к головокружениям. В этом лежит причина головных болей, снижения работоспособности, периодических приступов вялости. Нередко у подростков возникает обморочное состояние из-за спазмов мозговых сосудов. Все эти нарушения, как правило, исчезают с окончанием периода полового созревания.

Вилочковая железа, или тимус ч.19) расположен в верхнем отделе переднего средостения. Закладывается на 6 неделе эмбрионального развития. При рождении масса железы равна 10-15 г, максимального значения она достигает к 11-13 годам (35-40 г). После 13 лет постепенно происходит возрастная эволюция вилочковой железы и к 75 годам ее масса составляет в среднем всего 6 г.

Тимусу принадлежит важная роль в иммунологической защите организма, в частности в образовании иммунокомпетентных клеток. Под влиянием гормона тимозина, стволовые клетки превращаются в Т-лимфоциты, которые затем поступают в лимфатические узлы. У детей с врожденным недоразвитием тимуса возникает лимфопения (снижение количества иммунных тел). С деятельностью железы связан период наиболее интенсивного роста организма. До сих пор не получен гормон вилочковой железы в чистом виде.

ГИПОФИЗ

Гипофиз одна из центральных желез внутренней секреции, расположена под основанием головного мозга в углублении турецкого седла черепа и имеет массу 0,5-0,7 г.
 (300x342, 9Kb)
Гипофиз (hipophysis). Положение гипофиза в области основания головного мозга. Сагиттальный разрез мозга. Вид с медиальной стороны. 1 - мозолистое тело; 2 - свод; 3 -таламус; 4 - третий желудочек; 5 - гипоталамус; 6 - средний мозг; 7 - серый бугор; 8 -глазодвигательный нерв; 9 - воронка; 10 - инфундибулярная часть гипофиза; 11 - гипофиз; 12 -перекрест зрительный нервов; 13 - передняя (белая) спайка.

 (300x302, 8Kb)
Гипофиз (hipophysis) и его взаимоотношения с кровеносными сосудами головного мозга и с черепными нервами. Вид снизу. 1 - передняя мозговая артерия; 2 - зритель-ный нерв; 3 - перекрест зрительных нервов; 4 - внутренняя сонная артерия; 5 - средняя мозговая артерия; 6 - воронка (серого бугра); 7 - гипофиз; 8 - задняя мозговая артерия; 9 -глазодвигательный нерв; 10 - основная (базилярная) артерия; 11 - мост (мозга); 12 - артерия лабиринта; 13 - задняя соединительная артерия; 14 - зрительный тракт; 15 - серый бугор; 16 - обонятельный тракт.

261451678 (391x400, 42Kb)
Срединный продольный разрез гипофиза человека (схема): 1 — воронкообразный отросток; 2 — задняя доля; 3 — промежуточная доля; 4 — передняя доля.

Гипофиз состоит из трех долей: передней, средней и задней , окруженных общей капсулой из соединительной ткани. Один из гормонов передней доли оказывает влияние на рост. Избыток этого гормона в молодом возрасте сопровождается резким усилением роста — гигантизм, а при повышенной функции гипофиза у взрослого, когда рост тела прекращается, наступает усиленный рост коротких костей: предплюсны, плюсны, фаланг пальцев, а также мягких тканей (языка, носа). Такая болезнь называется акромегалией.
Пониженная функция передней доли гипофиза приводит к карликовому росту. Гипофизарные карлики пропорционально сложены и нормально умственно развиты.

В передней доле гипофиза образуются также гормоны, влияющие на обмен жиров, белков, углеводов. В задней доле гипофиза вырабатывается антидиуретический гормон, который снижает скорость образования мочи и изменяет водный обмен в организме.

В передней доле гипофиза, или аденогипофизе, железистые клетки выделяют шесть тропных гормонов, то есть гормонов, стимулирующих другие эндокринные железы.

• Тиреотропный гормон, или гормон, стимулирующий щитовидную железу (ТТГ): стимулирует секрецию щитовидной железы.
• Гонадотропный, или фолликулостимулирующий гормон (ФСГ): стимулирует развитие фолликула яичника у женщин и созревание сперматозоидов у мужчин.
• Лютеинизирующий гормон (ЛГ): стимулирует овуляцию у женщин и выработку тестостерона у мужчин.
• Адренокортикотропный гормон (АКТГ): стимулирует кору надпочечников с целью выработки кортикостероидных гормонов.
• Пролактин: стимулирует секрецию молока молочными железами.
• Гормон роста (СТГ) (соматотропин): стимулирует рост костей и мышц, усиливая митоз и поступление в клетки аминокислот.

Промежуточная доля гипофиза секретирует один-единственный гормон — меланостимулирующий гормон МСГ) , помогающий синтезировать меланин.

Задняя доля гипофиза, или нейрогипофиз , выполняет функцию депо гормонов, синтезированных в гипоталамусе.

Деятельность всех желез внутренней секреции взаимосвязана: гормоны передней доли гипофиза способствуют развитию коркового вещества надпочечников, усиливают секрецию инсулина, влияют на поступление в кровь тироксина и на функцию половых желез.

Работу всех желез внутренней секреции регулирует центральная нервная система, в которой находится ряд центров, связанных с функцией желез. В свою очередь гормоны влияют на деятельность нервной системы. Нарушение взаимодействия этих двух систем сопровождается серьезными расстройствами функций органов и организма в целом.

АКТГ вызывает раздражение пучковой и сетчатой зон надпочечников и усиливает синтез их гормонов. Секреция АКТГ усиливается при воздействии всех чрезвычайных раздражителей, вызывающих стресс, это вызывает усиление выработки глюкокортикоидов (способствующих повышению сопротивляемости организма неблагоприятным факторам).

Интенсивность синтеза АКТГ в гипофизе у детей больше, чем у взрослых, и снижается в дальнейшем с возрастом, что может объяснять снижение барьерной (защитной) функции организма к заболеваниям в стареющем организме.

В передней доле гипофиза продуцируются гормоны, общее название которых гонадо-тропные гормоны (ФСГ, ЛГ). Фолликулостимулирующий гормон стимулирует рост и развитие фолликулов яичников и выход из них эстрогенов, а также рост яичек и сперматогенез.

ЛГ вызывает периодический выход яйцеклетки из яичника (овуляцию), а также развитие после этого желтого тела, способствует росту и развитию яичка, выработке андрогенов.

В первые годы после рождения в гипофизе мальчиков и девочек гонадотропные гормоны почти отсутствуют. С возрастом в гипофизе женщин, и в меньшей степени — мужчин, происходит повышение концентрации гонадотропинов, которое длится и после наступления менопаузы.

 (300x268, 42Kb)

ГИПОТАЛАМУС

 (292x283, 22Kb)

Гипоталамус расположенный над гипофизом головного мозга, является центральным органом гормональной системы: он регулирует выделение и распределение гормонов в нужных количествах и в нужное время.

Гипоталамус - часть промежуточного мозга, которая находится под зрительным бугром (таламусом) и является высшим центром регуляции эндокринной системы организма.

 (260x291, 18Kb)
Для осуществления данной функции нейроны гипоталамуса вырабатывают нейросекрет и объединяются в большое количество парных нейросекреторных ядер с разной специализацией.Наиболее известные из ядер гипоталамуса.
1. Супраоптические ядра (1) лежат под перекрёстом (хиазмой) зрительных трактов,
паравентрикулярные ядра (2) - в боковой стенке III желудочка.

2. а) Обе пары ядер вырабатывают нейрогормоны пептидной природы: антидиуретический гормон (АДГ, или вазопрессин) и окситоцин.
б) Тот и другой поступают в заднюю долю (3) гипофиза.

3. Несколько ядер расположены в сером бугре, который образует дно III желудочка. Аркуатные, или инфундибулярные, ядра (4) дугообразно охватывают спереди ножку гипофиза; вентромедиальные (5) и дорсомедиальные (6) ядра находятся в срединной части серого бугра.

4. а) Ядра этой группы вырабатывают факторы, регулирующие продукцию гормонов передней и средней долями (7) гипофиза.
б) Причём, т.н. либерины стимулируют эту продукцию, а статины - угнетают.

Гипоталамус - это место, куда поступают все сигналы, идущие от всех нервных клеток головного мозга. Затем он на основе этой информации передает необходимые команды в гипофиз.

Кроме своих функций, связанных с нервной системой, гипоталамус выполняет также эндокринную функцию, так как его нервные клетки высвобождают нейрогормоны, вырабатываемые не собственно эндокринной железой. Два из них хранятся в гипофизе: окситоцин, регулирующий сокращения матки во время родов, и вазопрессин, или антидиуретический гормон, регулирующий водный обмен и стимулирующий обратную резорбцию воды в почках и сужающий сосуды.

с использованием материалов книги Григория Белоголовского «АНАТОМИЯ ЧЕЛОВЕКА»
http://vetfak.nsau.edu.ru/new/uchebnic/histology/r5/t15.html#15.3.1.1.%20Ядра%20гипоталамуса

Рубрики:  Анатомичка

Комментарии (0)

АНАТОМИЧКА,Endocrinologia,Железы внутренней секреции, ч.22

Дневник

Пятница, 05 Декабря 2008 г. 15:38 + в цитатник
ЭНДОКРИННЫЕ ЖЕЛЕЗЫ (Endocrinologia)


В организме человека имеется две системы желез. Одни железы, например, пищеварительные, имеют протоки, которые открываются в полость пищеварительного тракта, куда изливается секрет этих желез. Их называют железами внешней секреции.
Железы, которые не имеют выводных протоков, их секрет поступает непосредственно в кровь, называются железами внутренней секреции, или эндокринными железами (endo — внутрь, crino — выделяю).
 (699x530, 18Kb)

Важное значение в жизнедеятельности человека и животных имеют биологически активные вещества - гормоны.Они вырабатываются эндокринными железами, которые богато снабжены кровеносными сосудами.Эти железы не имеют выводных протоков, и их гормоны поступают непосредственно в кровь, а затем разносятся по всему телу, осуществляя гуморальную регуляцию всех функций: они возбуждают или угнетают деятельность организма, влияют на его рост и развитие, изменяют интенсивность обмена веществ.

По строению и физиологическому действию гормоны специфичны: каждый гормон оказывает мощное влияние на определенные процессы обмена веществ или работу, органа, вызывая замедление или, наоборот, усиление его функции.

К железам внутренней секреции относятся гипофиз, щитовидная железа, околощитовидные железы, надпочечники, островковая часть поджелудочной железы, внутрисекреторная часть половых желез. Все они функционально взаимосвязаны между собой: гормоны, вырабатываемые одними железами, оказывают влияние на деятельность других желез, что обеспечивает единую систему координации между ними, которая осуществляется по принципу обратной связи. Главенствующая роль в этой системе принадлежит гипофизу, гормоны которого стимулируют деятельность других желез внутренней секреции.

Нервная и эндокринная системы связаны теснейшим образом , и их можно рассматривать как часть единой системы, координирующей органические функции и поддерживающей постоянство внутренней среды. Первая воспринимает внешние раздражители и генерирует ряд ответных реакций. Вторая представляет собой систему внутреннего контроля и регуляции, компенсирующую изменения, внесенные извне.

Обе используют химические агенты: нервная система использует нейромедиаторы - - молекулярные сигналы, идущие от одной нервной клетки к другой благодаря электроимпульсу; эндокринная состоит из ряда клеток, организованных в железы, выделяющие гормоны в кровь для доставки в места, где они должны выполнять свои функции.
Гормональная система — система медленного действия, в то время как нервная система обладает намного более быстрой ответной реакцией.

Гормоны, вырабатываемые эндокринными железами, выделяются в кровоток и поступают во все части организма, но каждый из них действует только в одном месте или в определенном органе тела, именуемом органом-мишенью.

Влияние гормонов может проявляться в разных формах. Некоторые гормоны, такие, как инсулин и глюкагон, побуждают клетки на выработку определенных соединений — это то, что известно как динамическое влияние.
Другие оказывают метаболическое влияние: ускоряют или замедляют обмен веществ в определенных клетках.
Гормон роста оказывает морфогенетическое влияние, так как стимулирует развитие и дифференциацию клеток в некоторых органах тела.

Химическая природа гормонов

Гормональные жидкости имеют химическую природу, которая обеспечивает совершенное взаимодействие различных органов тела человека. Английские ученые Старлинг и Бейлисс, открывшие эти жидкости в 1906 г., назвали их гормонами, учитывая этимологию греческого слова hormao, что значит возбуждать, стимулировать.

Гормоны могут соответствовать нескольким типам органических молекул.
• Белки с короткой цепью: состоят из немногих аминокислот, например, окситоцин и вазопрессин.
• Белки с длинной цепью: состоят из многих аминокислот, например, инсулин и глюкагон.
• Производные жирных кислот: например, простагландины.
• Производные аминокислот: такие, как адреналин и тироксин.
• Стероиды: такие, как половые гормоны и гормоны, выделяемые корой надпочечников.

 (504x699, 139Kb)

ЖЕЛЕЗЫ ВНУТРЕННЕЙ СЕКРЕЦИИ

Гипофиз

Гормоны: Ростовые
Норма: Регулируют рост организма в молодом возрасте.
Гиперфункция: В молодом возрасте вызывают гигантизм, у взрослых - болезнь акромегалию.
Гипофункция: Задерживают рост (карликовость), при этом пропорции тела и умственное развитие остаются нормальными.

Гормоны: Регуляторные
Норма: Регулируют деятельность половых и щитовидной желез и надпочечников.
Гиперфункция: Усиливают гормональную активность всех желез.
Гипофункция: Усиливают отделение воды при образовании вторичной мочи (потеря воды).

Щитовидная

Гормоны: Тироксин, содержащий йод
Норма: С кровью разносится по организму, регулируя обмен веществ. Повышает возбудимость нервной системы.
Гиперфункция: Базедова болезнь, выражающаяся в повышении обмена веществ, возбудимости нервной системы, развитии зоба.
Гипофункция: Микседема, выражающаяся в понижении обмена веществ, возбудимости нервной системы, отечности. В молодом возрасте - карликовость и кретинизм.

Надпочечники

Норма: Регулируют обмен минеральных и органических веществ, выделение половых гормонов.
Гиперфункция: Раннее половое созревание с быстрым прекращением роста.
Гипофункция: Бронзовая болезнь (бронзовый оттенок кожи, слабость, похудение). Удаление коры надпочечников вызывает смерть вследствие потери большого количества натрия.

Гормоны: Адреналин
Норма: Ускоряет работу сердца, сужает кровеносные сосуды, тормозит пищеварение, расщепляет гликоген.
Гиперфункция: Учащенное сердцебиение, повышение пульса и кровяного давления, особенно при испуге, страхе, гневе.
Гипофункция: Количество регулируется нервной системой, поэтому его недостатка практически не бывает.

Поджелудочная железа

Гормоны: Инсулин
Норма: Регулирует содержание глюкозы в крови, синтез гликогена из избытка глюкозы.
Гиперфункция: Шок, сопровождающийся судорогами и потерей сознания при падении уровня глюкозы в крови.
Гипофункция: Сахарный диабет, при котором уровень глюкозы в крови повышается, появляется сахар в моче.

У здорового человека вырабатывается то количество гормонов, которое требуется его организму, но иногда наблюдаются органические нарушения, приводящие к излишнему образованию гормонов (гиперфункция) или к недостаточному образованию (гипофункция).

Одной из этих аномалий является зоб, вызываемый гиперфункцией щитовидной железы. Эта железа увеличивается в размере и приводит к пучеглазию.
Наиболее известная болезнь, вызванная гипофункцией, — сахарный диабет, появляющийся из-за недостатка инсулина, что приводит к повышению уровня глюкозы в крови.
Среди других отклонений встречается кретинизм (гипофункция щитовидной железы в детстве), болезнь Аддисона (гипофункция коры надпочечников).

с использованием материалов книги Григория Белоголовского «АНАТОМИЯ ЧЕЛОВЕКА»
Рубрики:  Анатомичка

Комментарии (0)

АНАТОМИЧКА, Angiologia, Лимфатическая система, ч.21

Дневник

Четверг, 04 Декабря 2008 г. 18:36 + в цитатник
УЧЕНИЕ О СОСУДАХ (Angiologia)

ИМУННАЯ СИСТЕМА, продолжение

Лимфоидные ткань и структуры, связанные со слизистыми оболочками. Лимфоидные структуры и диффузные лимфоциты свойственны всем основным типам слизистых оболочек — в пищеварительном, бронхолегочном и урогенитальном трактах. Это огромный по объему отдел иммунной системы: площадь поверхности слизистых оболочек у человека составляет 400 м2 (для сравнения: поверхность кожи — 1,8 м2).

 (200x287, 6Kb)

Небная миндалина (tonsilla palatina). Поперечный разрез. 1 - слизистая оболочка; 2 - многослойный плоский эпителий; 3 - околоузелковая лимфоидная ткань; 4 -лимфоидные узелки; 5 - просвет крипты.

 (200x135, 2Kb)

Лимфоидные узелки в стенке аппендикса. Поперечный срез. 1 - стенка аппендикса; 2 - лимфоидные узелки; 3 - эпителиальный покров.

 (200x254, 3Kb)

Лимфоидные узелки и лимфоидная бляшка в стенке тонкой кишки. I - лимфоидные узелки; 2 - лимфоидная бляшка

Различают структурированную и диффузную составляющие лимфоидной ткани, ассоциированной со слизистыми оболочками. Первая включает в себя единичные некапсулированные фолликулы, а также такие организованные формирования лимфоидной ткани, как миндалины, аппендикс, групповые лимфатические фолликулы (пейеровы бляшки).
 (699x466, 58Kb)

Вторая составляющая представлена единичными клетками, инфильтрирующими эпителиальные пласты слизистых оболочек (Т-лимфоциты) и собственную пластинку (lamina propria), а также подслизистый слой (преимущественно В-лимфоциты).

Другая классификация лимфоидных образований, связанных со слизистыми оболочками, основана на учете места этих образований в иммунных процессах: их разделяют на индуктивные и эффекторные участки. К первым в пищеварительном тракте относятся миндалины, групповые лимфатические фолликулы и региональные лимфатические узлы, ко вторым — межэпителиальные лимфоциты и собственная пластинка (Пейе). Первые осуществляют процесс восприятия и первичной обработки антигена, вторые реализуют иммунные реакции.

IMMUN1 (650x378, 27Kb)

Лимфоидная ткань, связанная с кожей. Для нее характерны три главных клеточных элемента — белые отростчатые эпидермоциты (клетки Лангерганса ), лимфоциты и кератиноциты.

 (400x327, 12Kb)

Белые отростчатые эпидермоциты, описанные выше, являются антигенпредставляющими клетками, связывающими и обрабатывающими антиген, но неспособными представлять его Т-хелперам и активировать их. Они локализуются в эпидермисе. При проникновении в него антигена эти клетки фиксируют его и мигрируют в региональный лимфатический узел, созревая в процессе миграции до стадии интердигитальной клетки, способной активировать Т-хелперы.

Лимфоидные клетки эпидермиса представлены исключительно Т-лимфоцитами, несущими αβ- или γδ-рецептор. Первые постоянно выполняются за счет созревания в тимусе; они составляют часть общего рециркулирующего пула лимфоцитов. γδ-Т-клетки частично представляют собой потомки клеток, выселившихся из тимуса в эмбриональном периоде; их маркером является продукт VγЗ-гена, который содержится в составе их TCR.

Другую группу образуют Vγ5+-клетки, которые, как полагают, созревают вне тимуса. Считают, что γδ+-Т-клетки кожи осуществляют первую линию защиты, реагируя на наиболее распространенные детерминанты бактериальных антигенов, в частности стресс-белки (белки теплового шока). В дерме присутствуют как Т-, так и В-лимфоциты, поступающие в нее из рециркуляции.

Кератиноциты, т.е. эпидермальные клетки, в неповрежденной коже служат барьерными клетками , строго говоря не относящимися к иммунной системе. Однако под влиянием повреждения и действия микроорганизмов и их продуктов, а затем цитокинов они активируются, экспрессируют молекулы адгезии и начинают выделять разнообразные цитокины, служащие пусковыми факторами и медиаторами иммунных реакций в коже.

Цитокины — группа гормоноподобных белков и пептидов — синтезируются и секретируются клетками иммунной системы и другими типами клеток.

 (467x698, 54Kb)

КРОВЬ И ЛИМФА

Кровь является местом временного пребывания клеток иммунной системы, будучи «руслом», по которому они перемещаются из кроветворных органов в периферические органы иммунной системы, а для лимфоцитов — также одним из путей рециркуляции. К путям рециркуляции лимфоцитов относится также лимфа, в которую лимфоциты проникают из лимфатических узлов и лимфоидной ткани слизистых оболочек и из которой они поступают в кровоток.

Содержание в крови лимфоцитов составляет 20-35 % (обычно — около 25 %), моноцитов — 5-8 %, нейтрофильных гранулоцитов — 60-75 %. Более высокое содержание Т-, чем В-клеток, связано, очевидно, с особенностями их рециркуляции — большей интенсивностью рециркуляции Т-лимфоцитов. Преобладание субпопуляции СD4+-лимфоцитов (хелперов) над СD8+-киллерами отчасти также связано с разной скоростью их рециркуляции, но в целом отражает сходное соотношение клеток этих субпопуляций в периферическом отделе иммунной системы.

 (248x137, 6Kb)
нейтрофильные гранулоциты

Кровь и присутствующие в ней клетки, в частности лимфоциты, будучи наиболее доступными для исследования, изучены особенно подробно. При этом следует иметь в виду, что они представляют всего лишь около 0,1% от общего пула лимфоцитов и свойства циркулирующих лимфоцитов могут не вполне объективно отражать состояние этих клеток в органах иммунной системы.

Во-первых, в рециркуляцию поступают в целом наиболее «здоровые» клетки, способные к активному перемещению и взаимодействию с тканевыми барьерами. Во-вторых, разновидности лимфоцитов различаются по способности к рециркуляции и, следовательно, вероятности оказаться в кровотоке. Наконец, в крови почти отсутствуют делящиеся клетки и клетки, участвующие в данное время в реакции на антиген. Напротив, популяция клеток памяти может быть предпочтительно представлена в крови в силу их высокой способности к рециркуляции.

Большинство клеток иммунной системы происходит из кроветворных тканей и некоторое время находится в кровотоке (в этом смысле иммунная система является дочерней по отношению к кроветворной). Это относится как к общеизвестным клеткам крови - лимфоцитам, моноцитам и нейтрофилам, так и к дендритным и тучным клеткам, которые формально не отноcят к клеткам крови из-за их малой численности в крови и непродолжительности пребывания в циркуляции. Лишь Т-лимфоциты нуждаются в особых условиях развития, которые они находят, мигрируя из костного мозга в тимус (вилочковая железа).

 (564x467, 39Kb)

Рабочая клетка иммунной системы — лимфоцит. Происходит из стволовой полипотентной клетки. Пройдя обучение в тимусе, лимфоцит становится Т-лимфоцитом - структурной единицей Т-клеточного звена иммунитета, который осуществляет противовирусную, противобактериальную защиту, а также защиту против грибков, гельминтов и простейших.

Дефекты Т-клеточного звена проявляются в частых ОРВИ, отсутствии защиты от вирусов, грибков, простейших и от опухолей. При встрече с антигенами в крови Т-лимфоцит размножается и дифференцируется.

Выделяют следующие подгруппы (субпопуляции) Т-клеток: эффекторы (киллеры), хелперы, супрессоры, клетки памяти и др.

Т-эффекторы - обладают цитостатическим действием (убивают клетки-мишени). Они обладают высшей формой специализации. Убивает только те клетки, которые вызвали его пролиферацию. Параллельно образуются регуляторные субпопуляции клеток — Т-хелперы. Последние помогают включить иммунную систему в работу. Вырабатываются и Т-супрессоры, которые удерживают работу иммунной системы на заданном уровне. Осуществляют обратную связь.

Имеются также клетки Т-усилители, Т-памяти, Т-дифференцировки. На поверхности Т-лимфоцитов есть рецепторы, имеющие клональное строение. Клон — это клетка, происходящая из родоначальной клетки. Сколько есть антигенов, столько есть и клонов. Клональная ситема позволяет работать иммунной системе достаточно экономно. Позволяет использовать полипрепараты для иммунизации.

В-лимфоцит — основная клетка — плазматическая или антителообразующая клетка. В процессе дифференцировки В-лимфоцитов образуются те же подгруппы, что и у Т-лимфоцитов. На поверхности В-лимфоцитов имеются рецепторы, имеющие глобулиновую природу. Рецепторы В - клеток имеют клональное строение. В процессе дифференцировки В-лимфоцита на его поверхности появляется М-глобулиновый рецептор, затем G, а затем — А. Завершение взросления проявляется появлением на поверхности В-лимфоцита D-иммуноглобулиновой молекулы.

Плазматические клетки образуют 5 классов, отличающиеся по структуре и функции. Ig M, G, A, D и E.

Третья линия - макрофаг (А-клетка). Макрофаг первым встречает антиген. На базе его ферментативных систем происходит обработка антигенных детерминант. На большинство антигенов иммунная система отвечает кооперированным взаимодействием.

NK — натуральные или естественные киллеры описаны в последние годы. Природа и происхождение их не уточнена. Возможна их сопричастность к зрелым Т-лимфоцитам, однако больше данных, что это смешанная клеточная популяция клеток лимфоидного и моноцитарного ряда. Эти клетки обеспечивают противоопухолевую защиту, обеспечивают элиминацию стареющих клеточных структур организма. Важная роль NK и в формировании противоинфекционного иммунитета при хронических заболеваниях.

0- лимфоциты. К ним относятся клетки, не несущие на своей поверхности маркеров Т- и В- лимфоцитов.

L- и K- лимфоциты - разновидность 0-лимфоцитов. Мишенями для них являются опухолевые клетки, измененные вирусами Т- и В-лимфоциты, моноциты, фибробласты, эритроциты.

Двойные клетки. Они несут на поверхности маркеры Т- и В-лимфоцитов. Называют их еще D- лимфоцитами, они выполняют функцию как Т-,так и В-имфоцитов.

с использованием материалов книги Григория Белоголовского «АНАТОМИЯ ЧЕЛОВЕКА»
Рубрики:  Анатомичка

Комментарии (0)

АНАТОМИЧКА, Angiologia, Лимфатическая система, ч.20

Дневник

Понедельник, 01 Декабря 2008 г. 18:37 + в цитатник
УЧЕНИЕ О СОСУДАХ (Angiologia)

ИМУННАЯ СИСТЕМА, продолжение


Периферические лимфоидные органы. Как отмечалось, периферический отдел иммунной системы включает систему органов (лимфатические узлы, селезенка, лимфоидные структуры и диффузная лимфоидная ткань, связанные со слизистыми оболочками и кожей), объединенных системой рециркуляции с относительной автономией субсистем, которые связаны с различными отделами слизистых оболочек (желудочно-кишечного тракта, бронхолегочного аппарата, урогенитального тракта) и кожи.

Лимфатические узлы дренируют лимфу с определенных регионов тела и контролируют появление в них чужеродных объектов — антигенов и их носителей. В некоторых отделах организма, например вдоль крупных сосудов на брыжейке, узлы располагаются цепочками или образуют конгломераты. Они имеют бобовидную форму и размеры от зерна до миндального ореха. Приносящие лимфатические и кровеносные сосуды проникают в узел с его выпуклой стороны и впадают в краевой синус, через который лимфа проникает в ткань коры. Узел покрыт капсулой, от которой внутрь органа отходят тонкие соединительнотканные перегородки — трабекулы. Эфферентные сосуды выходят с вогнутой поверхности узла.

Лимфатический узел (nodus lymphaticus)

 (300x237, 87Kb)

Продольный разрез. 1-капсула; 2-трабекула; 3-приносящий лимфатический сосуд; 4-подкапсулярный лимфатический синус; 5-корковое вещество; 6-паракортикальная (тимусзависимая) зона; 7-лимфоидыный узелок; 8-центр размножения лимфоидного узелка; 9-корковый лимфатический синус; 10-мякотные тяжи; 11-мозговые синусы; 12-воротный синус; 13-выносящий лимфатический сосуд; 14-воротное утолщение; 15-кровеносные сосуды.

При развитии иммунного ответа в фолликулах появляются центры размножения (содержащий их фолликул называется вторичным). При этом дендритные клетки длительное время сохраняют на своей поверхности антиген, что является условием для формирования в зародышевом центре клеток памяти. В пространстве, окружающем фолликулы, содержатся как В-, так и Т-лимфоциты.

 (300x258, 34Kb)

Мозговая зона лимфатических узлов содержит мякотные шнуры, образованные ретикулиновыми волокнами, лимфоцитами обоих классов (с преобладанием В-лимфоцитов) и плазматическими клетками, число которых особенно увеличивается при иммунном ответе. Между мякотными шнурами находятся медуллярные синусы — скопления лимфы, собираемой в эфферентные лимфатические сосуды.

В узлах преобладают Т-лимфоциты. Хотя в них развивается как гуморальный, так и клеточный ответ на антигены, полагают, что второй тип ответа в большей степени отражает специфику иммунологической функции лимфатических узлов. Отличия в структуре и функции лимфатических узлов, локализующихся в различных отделах организма, невелики. Наибольшим своеобразием отличаются брыжеечные лимфатические узлы, в которых несколько выше процент В-лимфоцитов, особенно несущих мембранный IgA. Кроме того, они занимают особое место в рециркуляции лимфоцитов.

Селезенка (начало ч.15) расположена на гематогенных путях распространения антигенов, что отличает ее от лимфатических узлов, контролирующих лимфатические пути, и обусловливает единичность этого органа (в отличие от множественности лимфатических узлов, дренирующих определенные регионы тела). Селезенка обладает более комплексными функциями, чем лимфатический узел: она служит фильтром для старых эритроцитов, резервуаром, регулирующим объем циркулирующей крови и т.д.

Селезенка окружена плотной капсулой, от которой внутрь отходят трабекулы, несущие сосуды (как и в лимфатических узлах). Содержимое селезенки представляет собой массу красного цвета (красная пульпа), в которую вкраплены белесоватые зерновидные тельца (белая пульпа).

Белая пульпа связана с артериолами селезенки и имеет наиболее прямое отношение к иммунологической функции органа. Артериолы, отходящие от трабекулярных артерий, окружены лимфоидными скоплениями, муфтами, образованными в основном Т-лимфоцитами и являющимися тимусзависимыми зонами селезенки.

Муфты соседствуют с фолликулами, аналогичными фолликулам лимфатических узлов и образованными В-лимфоцитами. В фолликулах от артериол отделяются капилляры, открывающиеся в ткань, которая окружает фолликулы, и муфты — маргинальную зону. Последняя отделяет белую пульпу от красной, в которую переходит артериола.

В маргинальной зоне В-лимфоциты преобладают, но здесь присутствуют и Т-клетки. Плотность лимфоцитов в маргинальной зоне меньше, чем в фолликулах и муфтах. Структура стромы тимусзависимых и тимуснезависимых зон селезенки напоминает таковую аналогичных зон лимфатических узлов и характеризуется теми же особыми типами клеток.

В красной пульпе наряду с элементами крови, сосредоточенными в расширенных сосудах — синусоидах, содержатся губчатые скопления ткани, в которой присутствуют макрофаги, плазматические клетки и лимфоциты обоих классов. Плазматические клетки обнаруживаются в селезенке даже вне явно выраженных иммунных реакций. Это связано с тем, что в организме всегда присутствуют антигены (например, пищевые), на которые реагирует прежде всего селезенка.

«Спонтанные» антителообразующие клетки селезенки и являются отражением этого фонового уровня иммунных реакций организма, тем более что селезенка служит тем органом периферического отдела иммунной системы, в котором существуют оптимальные условия именно для развития гуморального ответа.

В селезенке В-лимфоциты преобладают над Т-клетками, что также свидетельствует о преимущественной ориентации органа на развитие гуморального иммунного ответа (в противоположность лимфатическим узлам). Среди Т-лимфоцитов преобладают, как и в других периферических органах иммунной системы, Т-хелперы. Однако в красной пульпе сосредоточены почти исключительно Т-клетки с супрессорной активностью. Здесь имеются также 0-клетки (т.е. клетки, лишенные маркеров Т- и В-лимфоцитов), в том числе значительное число NK-киллеров.

В селезенке много макрофагов, и уровень их функциональной активности достаточно высок. В связи с тем, что селезенка служит хранилищем крови, регулятором ее циркуляторного объема и местом, где задерживаются (при участии макрофагов) старые эритроциты, в суспензиях спленоцитов всегда имеется много красных кровяных элементов.


с использованием материалов книги Григория Белоголовского «АНАТОМИЯ ЧЕЛОВЕКА»


Рубрики:  Анатомичка

Комментарии (2)

АНАТОМИЧКА, Angiologia, Лимфатическая система, ч.19

Дневник

Среда, 26 Ноября 2008 г. 23:35 + в цитатник
УЧЕНИЕ О СОСУДАХ (Angiologia)

ИМУННАЯ СИСТЕМА, продолжение

Иммунная система представляет собой комплекс специализированных лимфоидных органов, а также диссеминированных клеток мезенхимального происхождения, способных выполнять иммунологические функции.

Лимфоидные органы - это органы, в которых происходит образование лимфоцитов, получили название, а ткань, их составляющая, — лимфоидной ткани. К ним относятся лимфатические узлы, вилочковая железа и селезенка. Лимфатические сосуды и узлы отдельных областей расположены по всему организму: в нижних конечностях, брюшной полости и тазе, грудной полости, верхних конечностях, голове и шее, а также во внутренних органах.

Гистологически иммунная система практически соответствует лимфоидной ткани. Важнейшая особенность последней состоит в том, что она распространена по всему организму, исключая немногие органы или отдельные их участки, называемые иммунологически привилегированными. При этом локализация клеток иммунной системы, прежде всего лимфоцитов, отнюдь не ограничивается лимфоидными органами: значительная их часть рециркулирует (т.е. постоянно поступает в кровоток и возвращается обратно) и при этом может мигрировать не только в лимфоидную ткань.

Иммунная система обладает собственной системой циркуляции -лимфатическими сосудами, которые имеются во всех органах, кроме головного мозга. По лимфатическим сосудам течет бесцветная, густая жидкость (лимфа), содержащая жиры и лейкоциты (лимфоциты).

В лимфатических узлах, миндалинах, костном мозге, селезенке, печени, легких и кишечнике — расположены особые зоны, где лимфоциты скапливаются, мобилизуются и откуда они отправляются выполнять свои защитные функции. Сложное строение иммунной системы гарантирует в случае необходимости быстрое развитие иммунного ответа.

Структура иммунной системы и взаимосвязи составляющих ее органов:

 (300x505, 20Kb)

Органы иммунной системы. Хотя клетки, выполняющие иммунологические функции, рассеяны по всему организму, к иммунной системе, строго говоря, относятся лишь лимфоидные органы и лимфоидные скопления, т.е. органы и структурные образования, основу которых составляют лимфоциты. Лимфоидные органы разделяют на центральные (первичные) и периферические (вторичные). Такими органами являются красный костный мозг, тимус, лимфатические узлы, селезенка и кишечные пластинки Пэйе.

Иммунная система не только подвижная, но и непрерывно обновляющаяся. В то же время постоянство ее состава поддерживается достаточно строго. Хотя принципы этого гомеостаза еще недостаточно понятны, очевидно, что регуляция осуществляется на уровне отдельных разделов (компартментов) системы: численность и состав клеток костного мозга, тимуса и периферических лимфоидных органов регулируются самостоятельно и относительно независимо друг от друга, причем периферические лимфоидные органы регулируются как единое целое.

Уникальная особенность лимфоидных клеток состоит в том, что для их терминального созревания во внутренней среде организма в норме отсутствуют необходимые стимулы: для этого требуется поступление извне или образование внутри (вследствие патологического процесса) чужеродной субстанции — антигена.Лишь при появлении антигена во внутренней среде организма лимфоциты превращаются в эффекторные клетки, способные выполнять иммунологические функции, которые и служат конечными стадиями их развития.

Костный мозг. В костном мозгу образуются все форменные элементы крови, включая лейкоциты — клетки, непосредственно связанные с иммунной системой. Часть клеток, развивающихся из костномозговых предшественников и относящихся к иммунной системе, практически не определяется в крови, таковы дендритные и тучные клетки.

 (699x437, 88Kb)

Кроветворная ткань представлена в костном мозгу цилиндрическими скоплениями вокруг артериол, образующими шнуры, отделенные друг от друга венозными синусоидами. Они расположены радиально и впадают в центральный синусоид. Клетки различных типов располагаются в кроветворной ткани островками. Наибольшее число стволовых элементов сосредоточено в периферической части просвета костномозгового канала.

Рядом с ними вокруг разветвлений артериол располагаются лимфоидные и моноцитарные элементы, тогда как предшественники нейтрофильных гранулоцитов сосредоточены в центре гемопоэтических долек. Размножающиеся и созревающие кроветворные клетки располагаются в петлях, которые образуют ретикулярные клетки. По мере созревания клетки (в частности, лимфоидные) перемещаются из периферической части просвета к центру, где они проникают в синусоиды и поступают в кровоток.

На долю миелоидных элементов в костном мозгу человека приходится 60—65 % клеток, на долю лимфоидных — около 10-15 % кариоцитов. Примерно 60 % лимфоидных клеток находится в процессе созревания, остальные — зрелые клетки, готовые к эмиграции из костного мозга или, наоборот, мигрировавшие в костный мозг из крови.

Содержание в костном мозгу лимфоцитов В-ряда выше, чем Т-клеток и их предшественников. В костном мозгу содержится 1-2 % плазматических клеток, что можно рассматривать как отражение иммунных реакций, реализуемых в костном мозгу.

В-росток лимфопоэза отличается большой интенсивностью функционирования. В настоящее время признано, что костный мозг служит основным местом дифференцировки В-лимфоцитов у млекопитающих.

Небольшое количество (7-8%) кариоцитов костного мозга приобретает маркеры Т-клеток под влиянием дифференцировочных факторов, т.е. представляют собой предшественники Т-лимфоцитов. Часть из них экспрессирует маркеры Т-лимфоцитов — CD7, 2 и 5.

Формирование этих маркеров зависит от гормонов тимуса, приносимых в костный мозг с кровью. У клеток-предшественников, испытавших воздействие этих гормонов, повышается способность к миграции в тимус, в котором они продолжают свое развитие. На костномозговой стадии развития предшественники Т-лимфоцитов стимулируют (при участии выделяемого ими гуморального фактора) пролиферацию стволовых клеток.

Миграция зрелых Т-лимфоцитов, а также части тимоцитов в костный мозг усиливается под влиянием гормонов коры надпочечников. В связи с этимсодержание Т-клеток в костном мозгу увеличивается при стрессе.

Тимус (вилочковая железа)

В отличие от костного мозга, совмещающего функции кроветворного органа и центрального органа иммунной системы, в котором детерминируется развитие лимфоидных клеток и созревают В-лимфоциты, тимус специализирован исключительно на развитии Т-лимфоцитов (а также, как выяснилось в последнее время, миелоидных элементов собственного микроокружения). Это отражает особую сложность процесса развития Т-лимфоцитов.

 (200x238, 4Kb)

Тимус (Thimus). Положение тимуса в грудной полости. Вид спереди. 1 - тимус (правая и левая доли); 2 -внутренние грудные артерия и вена; 3 - перикард; 4 - левое лёгкое; 5 -плечеголовная вена (левая).

Эпителиальная часть органа является стабильной составляющей, имеющей местное происхождение, а лимфоидные элементы (собственно тимоциты) являются транзиторными: их предшественники мигрируют в тимус из костного мозга (в эмбриональном периоде из печени), а большая часть созревших в тимусе Т-лимфоцитов эмигрирует в периферический отдел иммунной системы, где они включаются в функциональный рециркулирующий пул Т-клеток. Основное назначение тимуса и состоит в формировании данного пула, что включает в себя:

• созревание Т-лимфоцитов, в частности появление у них антигенраспознающих рецепторов;
• дифференцировку Т-клеток на субпопуляции;
• отбор (селекцию) клонов Т-лимфоцитов, способных распознавать чужеродные пептиды в комплексе с аутологичными продуктами МНС.

Эти процессы осуществляются путем воздействия на предшественники Т-лимфоцитов и созревающие тимоциты клеточных и гуморальных факторов микроокружения, создаваемого элементами стромы тимуса.

Тимус состоит из двух долей, объединенных друг с другом. Каждая доля ограничена капсулой, от которой внутрь ткани отходят перегородки, делящие ее на дольки на уровне наружной части органа — коры. Внутренняя часть органа — мозговая — едина для каждой доли.

Тимус как бы разделен на два пространства (компартмента). Одно из них представлено обычной соединительнотканной стромой, сопровождающей сосуды и нервы. Строма образована фибробластами, эндотелием капилляров, волокнами; в периваскулярном пространстве присутствуют макрофаги, реже — плазматические и тучные клетки. Большая же часть объема органа приходится на второй — эпителиальный (внутритимусный) — компартмент, образованный трехмерным каркасом из эпителиальных клеток и ограниченный этими же клетками снаружи.

с использованием материалов книги Григория Белоголовского «АНАТОМИЯ ЧЕЛОВЕКА»


Рубрики:  Анатомичка

Комментарии (0)

АНАТОМИЧКА, Angiologia, Лимфатическая система, ч.18

Дневник

Вторник, 25 Ноября 2008 г. 00:18 + в цитатник
УЧЕНИЕ О СОСУДАХ (Angiologia)

ИМУННАЯ СИСТЕМА

Термин «иммунитет» имеет латинский корень, обозначающий освобождение, избавление от чего-либо. Первоначально в биологии под иммунитетом понимали резистентность или невосприимчивость организма к действию микроорганизмов.

Однако со временем это понятие было изменено и сейчас к нему относят реакции организма, направленные на нейтрализацию всего чужеродного, попадающего в его внутреннюю среду.

Помимо защиты от микроорганизмов, иммунная система бдительно отслеживает пути проникновения в организм чужеродного белка с вдыхаемым воздухом, через кожу или стенку кишечника, инъекционным путем и при этом стремится нейтрализовать его действие.

Эта система также отслеживает отклонения в «поведении» собственных клеток организма, оберегая его от размножения тех из них, которые склонны к злокачественному росту.

Несколько условно, но спектр иммунных ответов в отношении чужеродных микробов, вирусов или токсинов, чужеродных белков, а также поврежденных или измененных клеток можно разделить на 3 типа:
• это неспецифическая резистентность,
• врожденный иммунитет,
• приобретенный иммунитет.
 (600x331, 23Kb)

И хотя все эти типы иммунного ответа так или иначе связаны между собой, они имеют определенную специфичность.

Неспецифическая резистентность определяется целостностью кожных покровов и слизистых, их функциональной активностью, а также состоянием фагоцитов.

Врожденный иммунитет определяется в значительной степени системой комплемента. И, наконец, носителями приобретенного иммунитета являются Т- и В- лимфоциты.

Специфичность и память — это две основных характеристики приобретенного иммунитета.

Механизмы, обеспечивающие естественную резистентность (неспецифическую защиту), не зависят от антигенной специфичности чужеродного агента. Они не распознают попадающие в организм вещества и инфекты (инфекционные агенты), как генетически чужеродный материал, но в большинстве случаев действуют не менее эффективно, чем факторы приобретенного иммунитета.

Вместе с тем механизмы естественной резистентности и приобретенного иммунитета тесно переплетаются: их взаимодействие осуществляется на всех этапах проникновения, размножения возбудителя в организме и его элиминации. Факторы естественной резистентности первыми «встают» на защиту при действии патогенных (чаще всего инфекционных) агентов.

В системе неспецифической резистентности центральное место занимают две основные клеточные популяции: моноциты-макрофаги
pg1 (174x138, 9Kb)

и нейтрофилы-макрофаги (нейтрофилы,
 (344x282, 70Kb)

эозинофилы,
 (77x80, 1Kb)

базофилы).
 (210x140, 10Kb)

В определенных случаях они способны переходить из одной формы в другую: из базофилов формируются тучные клетки, моноциты превращаются в макрофаги.

Мононуклеарные моноциты (помимо участия в фагоцитозе) выполняют важную функцию в специфическом иммунитете — являются антигенпрезентирующими клетками, т.е. подготавливают антиген для узнавания специализированными лимфоцитами.

Помимо мононуклеарных моноцитов, к клеткам неспецифической резистентности относят и так называемые натуральные или естественные киллеры (НК), берущие свое начало от прелимфоцитов, дифференцировка которых завершается в селезенке.
 (423x160, 14Kb)

Ключевое место во врожденном иммунитете занимает система комплемента. Термин «комплемент» впервые был применен для описания неких необходимых «дополнительных» субстратов в сыворотке, для лизиса бактерий под действием специфических антител. В настоящее время к системе комплемента относят более 25 белков и их активных фрагментах, из которых девять — комплементные белки (С1-С9), а остальные — факторы комплемента (B, D, P, H и др.).

Главной функцией системы комплемента является отличие «своего» от «чужого», что осуществляется за счет регуляторных молекул находящихся на клетках организма и подавляющих активацию комплемента. При попадании в кровь и ткани активаторов (грамм-положительные или грамм-отрицательные бактерии, вирусы, другие микроорганизмы, иммунные комплексы) происходит каскадное взаимодействие белков системы комплемента с образованием промежуточных продуктов, повреждающих мембраны клеток-мишеней.

Центральное место в системе комплемента занимает белок С3. В плазме крови постоянно происходит «холостая» активация С3, приводящая к фиксации небольшого числа его молекул на поверхности как «своего», так и «чужого».

На поверхности собственных клеток регуляторные белки вызывают разрушение связавшихся молекул С3 и подавляют дальнейшую активацию комплемента. На чужеродных структурах, лишенных регуляторных белков, напротив, начинается его активация.

Итак, функции системы комплемента - это: лизис клеток; растворение иммунных комплексов; участие в фагоцитозе; воспалительной реакции; образование хемотаксинов; модуляция иммунного ответа; нейтрализация веществ.

Носителями приобретенного иммунитета, являются Т- и В-лимфоциты. В костном мозге образуются полипотентные стволовые клетки, дающие начало всем формам кровяных и лимфоидных клеток. Стволовые клетки, дифференцирующиеся по лимфоидному типу, мигрируют в тимус или созревают до зрелых форм в костном мозге.

Клетки, созревающие до зрелых форм в тимусе, получили название Т-лимфоцитов. Клетки, созревающие в костном мозге, называются В-лимфоцитами. Клетками, продуцирующими антитела, являются [B]плазмоциты — потомки активированных В-лимфоцитов.

До середины 60-х годов казалось, что основные клетки Т- и В-систем осуществляют иммунологические функции автономно. Первые из них предназначены для реализации клеточного типа ответа, вторые — гуморального. В тех случаях, когда организм инфицируется бактериями, основная нагрузка падает на В-систему иммунитета. Конечным результатом работы В-системы является накопление специфических антител, которые нейтрализуют бактерии или их токсины.

Если организм столкнулся с вирусной инфекцией, то в работу вступает Т-система иммунитета, составляющими элементами которой являются указанные выше субпопуляции Т-лимфоцитов, антиген-распознающие рецепторы, находящиеся на поверхности этих клеток (Т-клеточные рецепторы — ТКР), а также цитокины или группа регуляторных молекул.
 (283x204, 12Kb)

Одна из клеточных субпопуляций этой системы — Т-киллеры (цитотоксические Т-лимфоциты) являются основным компонентом антивирусного иммунитета.

Следующим этапом в понимании иммунной системы стало открытие закономерностей реакции отторжения трансплантата от тканей хозяина. Был открыт комплекс антигенов, локализованных на лимфоцитах и имеющих непосредственное отношение к реакции отторжения трансплантанта — Нuman Leukocyte Antigen (HLA — человеческий антиген лейкоцитов).
 (359x222, 25Kb)

До конца 60-х — начала 70-х годов было известно лишь одно свойство этого комплекса — контроль синтеза антигенов, вызывающих иммунную реакцию отторжения пересаженной ткани.

Затем, при изучении генетического контроля силы иммунного ответа и, особенно, анализе механизмов взаимодействия генетически отличающихся клеток был выявлен достаточно широкий спектр биологической активности HLA комплекса. По мере расширения знаний об участии комплекса в формировании иммуннитета, последний получил название главного комплекса гистосовместимости (ГКГ).

Антигены ГКГ представляют собой белковые комплексы, находящиеся на поверхности клеток. Они кодируемые группой тесно сцепленных генов, находящихся на коротком плече 6-й хромосомы. ГКГ занимает 3500 kb (kb — это тысяча пар оснований) и содержит более 220 генов. Выделено 3 класса генов ГКГ. Поэтому и продукты ГКГ принято подразделять на антигены трех классов. При этом многие черты контролируемых ГКГ белков свойственны одному или другому классу, хотя некоторые черты могут быть характерны для двух классов.

 (445x366, 7Kb)

Практически на всех ядросодержащих клетках (кроме клеток нейроглии ворсинчатого трофобласта человека) имеются антигены HLA класса I. Они широко представлены на лимфоидных клетках и в меньшей степени — клетках печени, легких, почек. Еще реже они встречаются на клетках мозга и скелетных мышц.

Распределение антигенов HLA класса II более ограничено. Они ассоциированы с B-лимфоцитами, антигенпрезентирующими клетками (клетки Купфера, дендритные клетки, клетки альвеолярного эпителия легких ) и макрофагами.

 (288x228, 16Kb)

Структура генов ГКГ класса I и класса II исследована достаточно полно: определена аминокислотная последовательность десятков аллельных вариантов этих молекул; выяснена пространственная структура некоторых из них, например, HLA-A2. Оба класса белков HLA антигенов относятся к иммуноглобулиновому суперсемейству.

ГКГ принадлежит центральное место в дифференцировке и окончательном созревании Т-лимфоцитов. Именно в тимусе происходят процессы дифференцировки Т-клеток на субпопуляции (Т-киллеры, Т-хелперы, Т-супрессоры).

Проникшие в организм чужеродные антигены (бактерии, вирусы, трансплантационные антигены, белки и др.) провоцируют образование строго специфических антител и/или формируют соответствующий клон лимфоцитов.
Под антигенами подразумеваются химические вещества, свободные, либо входящие в состав клеток, способные индуцировать иммунный ответ, сводящийся к удалению этого агента из организма.

Как правило, полноценный антиген состоит из двух частей: носителя и эпитопа. Носитель или стабилизирующая часть составляет до 97-99% массы молекулы антигена и представляет собой, как правило, инертную часть антиген. Эпитоп или детерминантная часть молекулы антигена (олигосахариды или олигопептиды), располагающиеся на поверхности молекулы (эпи-). Именно детерминантная группа определяет специфичность антигена.

По своей природе все существующие антитела представляют собой иммунноглобулины. Хотя иммуноглобулины и антигенсвязывающие рецепторы имеют между собой определенные различия, разнообразие антигенной специфичности тех и других формируется сходными механизмами. У млекопитающих, включая человека, известны 5 классов иммуноглобулинов: IgM, IgG, IgA, IgD и IgE. Каждый класс обладает своими структурными и биологическими свойствами, однако все они построены по общему плану.


с использованием материалов книги Григория Белоголовского «АНАТОМИЯ ЧЕЛОВЕКА»
Рубрики:  Анатомичка

Комментарии (0)

АНАТОМИЧКА, Angiologia, Лимфатическая система, ч.17

Дневник

Вторник, 18 Ноября 2008 г. 00:58 + в цитатник
УЧЕНИЕ О СОСУДАХ (Angiologia)

ЛИМФАТИЧЕСКАЯ СИСТЕМА , продолжение

Лимфатические сосуды головы и шеи собираются в правый и левый яремные лимфатические стволы, trunci jugulares dexter et sinister: truncus jugularis dexter впадает в ductus lymphaticus dexter, truneus jugularis sinister — в ductus thoracicus.

 (300x271, 6Kb)
Лимфатические сосуды и узлы головы. Вид слева. 1 - лимфатические сосуды; 2 - поверхностные околоушные лимфатические узлы; 3 - поднижнечелюстные лимфатические узлы; 4 - подбородочнне лимфатические узлы.

В области головы и шеи различают следующие основные группы лимфатических узлов.
1. Затылочные лимфатические узлы, nodi lymphatici occipilales, залегают в подкожной клетчатке на уровне верхней выйной линии.
2. Заушные лимфатические узлы, nodi lymphatici retroauriculares, позади ушной раковины.
3. Поднижнечелюстные лимфатические узлы, nodi lymphatici submandibulares в trigonum submandibulare (часть их залегает в толще поднижнечелюстной слюнной железы).
4. Подподбородочные лимфатические узлы, nodi lymphatici submentales, выше тела подъязычной кости, на передней поверхности mm. mylohyoidei.
5. Нижнечелюстные лимфатические узлы, nodi lymphatici mandibulares.
6. Лимфатические узлы околоушной железы, nodi lymphatici parotidei, — в окружности и толще околоушной железы; различают поверхностные и глубокие, nodi lymphatici parotidei superficiales et profundi.
7. Щечные лимфатические узлы, nodi lymphatici buccales.
8. Язычные лимфатические узлы, nodi lymphatici linguales, по бокам корня языка.
9. Поверхностные шейные лимфатические узлы, nodi lymphatici cervicales superficiales, no ходу наружной яремной вены и позади m.. sternocleidomastoideus.
10. Глубокие шейные лимфатические узлы, nodi lymphatici cervicales profundi, делятся на двубрюшно-яремные, nodi lymphatici jugulodigastrici, залегающие по ходу магистральных сосудов от основания черепа до уровня деления общей сонной артерии, и яремно-лопаточно-подьязычные, nodi lymphatici juguloomohyoidei, располагающиеся книзу и кзади от ключицы.
11. Заглоточные лимфатические узлы, nodi lymphatici retropharyngei, располагающиеся по боковой поверхности и несколько позади глотки.

Поверхностные лимфатические сосуды головы начинаются из лимфатических сетей кожи и делятся на две группы: переднюю и заднюю. Направление крупных лимфатических сосудов соответствует ходу кровеносных сосудов. Задняя группа поверхностных лимфатических сосудов головы собирает лимфу от затылочной области, от задней половины теменной и височной областей, от ушной раковины, наружного слухового прохода и барабанной перепонки. Лимфатические сосуды затылочной области вступают в затылочные лимфатические узлы, nodi lymphatici occipitales (числом 2-3).

Лимфатические сосуды теменной и височной областей и ушной раковины направляются к заушным лимфатическим узлам, nodi lymphatici retroauriculares (числом 3-4). Лимфатические сосуды от барабанной перепонки, наружного слухового прохода и части ушной раковины идут к поверхностным и глубоким лимфатическим узлам околоушной железы, nodi lymphatici parotidei superficiales et profundi.

Выносящие лимфатические сосуды этих узлов (nodi occipitales, retroauriculares, parotidei) — впадают преимущественно в поверхностные шейные лимфатические узлы, nodi lymphatici cervicales superficiales; часть сосудов направляется в глубокие шейные лимфатические узлы, nodi lymphatici cervicales profundi. Передняя группа поверхностных лимфатических сосудов головы начинается в лимфатических сетях кожи лба, наружного отдела верхнего и нижнего века, передних отделов теменной и височной областей и передней поверхности ушной раковины.

Лимфатические сосуды указанных областей направляются к nodi lymphatici parotidei superficiales, располагающимся впереди ушной раковины и у верхнего края околоушной железы. Выносящие сосуды этих узлов вступают в толще околоушной железы в глубокие лимфатические узлы околоушной железы, nodi lymphatici parotidei profundi, выносящие сосуды которых на уровне угла нижней челюсти впадают в глубокие шейные лимфатические узлы, nodi lymphatici cervicales profundi.

Лимфатические сосуды из кожных сетей внутренних половин верхнего и нижнего века, надпереносья, носа, щеки и верхней и нижней губ, а также глубокие сосуды от мышц, костей, слизистой оболочки преддверия рта и носа, конъюнктивы направляются соответственно ходу vasa facialia в подчелюстной треугольник, где вступают в поднижнечелюстные лимфатические узлы, nodi lymphatici suhmandibulares. числом от 6 до 10. Часть указанных лимфатических сосудов прерывается в щечных лимфатических узлах, nodi lymphatici huccales, находящихся на наружной поверхности m. buccinator.

Лимфатические сосуды от нижней губы и подбородка направляются к подподбородочным лимфатическим узлам, nodi lymphatici submentales. которые находятся над телом подъязычной кости; они принимают также лимфу от лимфатических сосудов кончика языка. Глубокие лимфатические сосуды от твердого и мягкого неба, носоглотки и полости носа, крылонебной и подвисочной ямок направляются к глубоким лицевым лимфатическим узлам и к nodi lymphatici parotidei.

Лимфатические сосуды языка делятся на поверхностные, которые начинаются из сети лимфатических сосудов слизистой оболочки, и на глубокие, сопровождающие кровеносные сосуды. Обе группы сосудов вступают в язычные лимфатические узлы, nodi lymphatici linguales. Отводящие сосуды языка направляются к nodi cervicales profundi, submandibulares et submentales.

Лимфатические сосуды от верхнего и нижнего века, конъюнктивы и глазницы направляются в соответствующие регионарные узлы. Глазное яблоко лимфатических сосудов не имеет, но содержит лимфатические пространства. К ним относятся spatia zonularia (так называется лимфатическое пространство между расходящимися волокнами связки, подвешивающей хрусталик), передняя и задняя камеры глаза и щели между оболочками. Отток жидкости из передней и задней камеры и spatia zonularia осуществляется через spatia anguli iridocornealis (так называются микроскопической величины лимфатические щели между пучками гребенчатой связки радужно-роговичного угла глазного яблока) в венозную пазуху склеры, sinus venosus sclerae, а оттуда — в венозную систему.

Поверхностные лимфатические сосуды шеи направляются к v. jugularis externa, в окружности которой они соединяются между собой и вступают в nodi lymphatici cervicales superficiales, числом до 4-5. Глубокие лимфатические сосуды шеи собирают лимфу от внутренних органов шеи — глотки, гортани, трахеи и шейной части пищевода, щитовидной железы и мышц шеи — и направляются к сосудисто-нервному пучку шеи, где вступают в двубрюшно-яремный лимфатический узел и в глубокие шейные лимфатические узлы, nodi lymphatici jugulodigastrici et nodi lymphatici cervicales profundi. Л

имфатические сосуды боковых долей щитовидной железы вливаются в двубрюшно-яремные лимфатические узлы; лимфати-ческие сосуды перешейка щитовидной железы предварительно прерываются в предгортанных лимфатических узлах, которые, числом 2-3, лежат над верхним краем перешейка, и в трахеальных лимфатических узлах, которые находятся ниже перешейка на боковой поверхности трахеи. Указанные узлы принимают также ряд лимфатических сосудов от гортани. По ходу лимфатических сосудов глотки находятся заглоточные лимфатические узлы, nodi lymphatici retropharyngei, располагающиеся на заднебоковой поверхности глотки.

Выносящие сосуды перечисленных узлов вливаются в глубокие шейные лимфатические узлы, nodi lymphatici cervicales profundi. Последние вместе с подходящими сюда лимфатическими сосудами образуют яремное лимфатическое сплетение; их сосуды направляются к яремно-лопаточно-подъязычному лимфатическому узлу и глубоким шейным лимфатическим узлам, nodi lymphatici juguloomohyoidei et cervicales profundi, которые собирают всю лимфу от головы и шеи; они залегают, числом 10-15, от уровня деления сонной артерии до ключицы, располагаясь на передней поверхности лестничных мышц. Лимфа оттекает от них в правый лимфатический проток, ductus lymphaticus dexter, справа и в грудной проток, ductus thoracicus, слева. Во все перечисленные узлы соответственно вливаются также лимфатические сосуды нижнего отдела глотки, шейного отдела пищевода и трахеи.

В области верхней конечности различают следующие лимфатические узлы.

 (200x665, 9Kb)
Лимфатические сосуды и узлы верхней конечности, правой. Вид спереди. 1 - подмышечные лимфатические узлы; 2 - локтевые лимфатические узлы; 3 - медиальные лимфатические сосуды; 4 - промежуточные (средние) лимфатические сосуды; 5 - латераль-ные лимфатические сосуды.

1. Подмышечные лимфатические узлы, nodi lymphatici axillares, числом 15-20, залегают в подмышечной ямке. Они являются регионарными узлами верхней конечности и области пояса верхней конечности. Часть подмышечных узлов располагается поверхностно, в слое жировой клетчатки, остальные — в глубине подмышечной ямки, в окружности кровеносных сосудов.

В зависимости от положения в них различают: верхушечные, центральные, латеральные и грудные лимфатические узлы, nodi lymphatici apicales, centrales, laterales. pectorales. По топографии и связям с лимфатическими сосудами определенных областей лимфатические узлы верхней конечности делят также на три группы: передние, нижние и наружные.

Передняя группа узлов (nodi lymphatici pectorales) располагается на наружной поверхности m. serratus anterior по ходу a. thoracia lateralis и принимает лимфу от поверхностных сосудов верхнего отдела передней брюшной стенки, переднебоковых отделов грудной клетки и молочной железы. Нижняя группа узлов (nodi lymphatici centrales et subscapulares) находится в заднем отделе подмышечной ямки. Эта группа узлов принимает лимфатические сосуды плеча и задней поверхности грудной клетки.

Наружная группа узлов (nodi lymphatici laterales) залегает на наружной стенке подмышечной ямки и принимает лимфатические сосуды верхней конечности.
2. Плечевые лимфатические узлы располагаются по ходу плечевой артерии.
3. Локтевые лимфатические узлы, nodi lymphatici cubitales, располагаются преимущественно в глубоких отделах локтевой ямки в окружности кровеносных сосудов. Часть этих узлов (1-3) залегает поверхностно над медиальным надмыщелком плечевой кости.
4. Лимфатические узлы предплечья, числом 1-2, находятся в верхней трети предплечья по ходу локтевой артерии.

Лимфатические сосуды верхней конечности делятся на поверхностные и глубокие лимфатические сосуды.

Поверхностные лимфатические сосуды верхней конечности залегают в поверхностных слоях подкожной клетчатки. Они начинаются из лимфатических сетей тыльной и ладонной поверхностей кисти, образуя две группы крупных лимфатических сосудов: внутреннюю по ходу v. basilica и наружную по ходу v. cephalica. Крупные стволы поверхностных сосудов, числом 8-10, по ходу принимают мелкие лимфатические сосуды смежных областей.

Внутренняя группа поверхностных лимфатических сосудов верхней конечности, следуя по ходу v. basilica, достигает локтевой ямки. Здесь один — два сосуда вступают в локтевые лимфатические узлы, nodi lymphatici cubitales, выносящие сосуды которых идут вместе с веной под плечевую фасцию к глубоким лимфатическим сосудам плеча. Остальные лимфатические сосуды этой группы следуют в подкожной клетчатке по внутренней поверхности плеча и достигают nodi lymphatici axillares. Наружная группа поверхностных лимфатических сосудов верхней конечности направляется вместе с v. cephalica и, достигнув верхней трети плеча, проникает с ней в глубину, в подмышечную ямку, где также достигает nodi lymphatici axillares.

Глубокие лимфатические сосуды верхней конечности собирают лимфу от мышц, костей и суставов. Лимфатические сосуды пальцев идут по их боковой поверхности по ходу артерий. На кисти эти сосуды, анастомозируя между собой, образуют ладонное лимфатическое сплетение, которое соответствует артериальной дуге. Отводящие лимфатические сосуды этого сплетения идут на предплечье, располагаясь по ходу a. radialis и a. ulnaris.

Лимфатический сосуд, идущий по ходу v. ulnaris, прерывается в верхней трети предплечья в лимфатических узлах предплечья, куда вливается также лимфатический сосуд, собирающий лимфу от тыла предплечья и сопровождающий заднюю межкостную артерию. Лимфатический сосуд, сопровождающий лучевую и локтевую артерии, достигнув локтевой ямки, вступает в nodi lymphatici cubitales. Выносящие сосуды этих узлов образуют одиночный лимфатический сосуд, который направляется на плечо по ходу а. brachialis. На границе нижней и средней трети плеча указан-ный сосуд вступает в лимфатический узел плеча, из которого выходят два выносящих сосуда.

Поднимаясь кверху по наружной и внутренней поверхностям плечевой артерии, они достигают подмышечной ямки, где вступают в наружную группу подмышечных лимфатических узлов. Лимфатические сосуды верхнего отдела передней брюшной стенки (поверхностные) кнаружи и кверху от пупка прерываются в надчревном лимфатическом узле, nodulus lymphalicus epigastricus, и, следуя по боковой поверхности грудной клетки, достигают подмышечной ямки, где вступают в переднюю группу nodi lymphatici axillares.

Рубрики:  Анатомичка


 Страницы: [2] 1