Случайны выбор дневника Раскрыть/свернуть полный список возможностей


Найдено 45 сообщений
Cообщения с меткой

стандартная модель - Самое интересное в блогах

Следующие 30  »
Rewiever

«Кризис физики в том, что кризиса нет»

Среда, 08 Октября 2025 г. 11:31 (ссылка)


Почему физика застряла в «калибровочной пустыне»


 


В ближайшие дни в музее «Атом» на ВДНХ начнутся «Атомные дискуссии» — ведущие ученые будут публично дискутировать о самых актуальных проблемах науки, текущих вызовах и способах их преодоления. О том, можно ли назвать ситуацию в физике тупиком или кризисом, мы беседуем с научным куратором «Атомных дискуссий», известным популяризатором науки, доктором физико-математических наук, заведующим лабораторией теории фундаментальных взаимодействий в Физическом институте имени Лебедева РАН Алексеем Семихатовым.


 


— Алексей Михайлович, начать наш разговор хотелось бы с неприятной темы. С конца XIX века и до второй половины ХХ века человечество пережило удивительные изменения в научно-технической сфере, что во многом было порождено успехами физических наук, в частности в сфере изучения электромагнитных и ядерных явлений. Но в последние десятилетия, если не считать развития информационных технологий, прогресс как будто замедлился. Можно ли сказать, что физика в кризисе?


7se25KtSemixatov2 (376x261, 68Kb)— Не стоит путать науку и технологии, но вы отчасти правы. ХХ век принес колоссальные изменения — собственно, смену парадигмы. Правда, как раз электромагнитная теория была завершена Максвеллом в середине XIX века, а два основных изменения в парадигме ХХ века — это теория относительности и квантовая теория, открывшая нам путь к управлению материей. Когда мы хотим сделать что-то необычное из области материалов или лекарств или с помощью химических реакций, нам требуется действительно тонкая настройка на фундаментальном, квантовом уровне. Отдельными квантами мы манипулируем и в квантовом компьютере. Квантовая механика «ответственна» за создание новых материалов, за оптические, магнитные и другие свойства твердых тел, причем с выходом на технологии — например, по созданию сверхчувствительных сенсоров, позволяющих определять изменения гравитационного поля от точки к точке на основе замедления времени. Но, вы правы, научных переворотов давно что-то не было. Кризис состоит, наверное, в том, что не было кризиса — не было смены парадигмы. Последняя смена парадигмы произошла ровно 100 лет назад, когда появилась квантовая механика.


 


— Но был прорыв в изучении Вселенной…


— Да, в 1960-е годы произошел значительный прорыв, астрофизика стала точной наукой, и в результате мы стали по-другому воспринимать Вселенную. А кризис — если мы хотим говорить про кризис — можно усмотреть в самой фундаментальной, по определению, области физики — в изучении фундаментальных свойств материи. Мы знаем не только про электроны, но также про протоны и нейтроны и про то, что протоны и нейтроны состоят из кварков. Знаем, что есть еще нейтрино, и знаем, какие взаимодействия имеются между всеми ними. Наша лучшая теория мироздания называется Стандартная модель. Она описывает самые фундаментальные составные части мира, но мы про нее знаем, что она неполна и не может быть везде точной. Нам ужасно хочется ее расширить, потому что это был бы прорывной момент в познании того, в какой вселенной мы живем. Но этого не удается сделать: Стандартная модель оказалась настолько удачной, что очень точно описывает все то, что мы можем измерить в эксперименте. Колоссальные были надежды, что вслед за бозоном Хиггса на Большом адронном коллайдере откроют явления, которые Стандартная модель не предсказывает. Но нет, этого не случилось. В эффектах, которые там можно точно измерить, мы не видим убедительных расхождений с предсказаниями Стандартной модели. А расхождение теории и эксперимента — это топливо для науки. Наука движется вперед, когда есть несогласие между предсказаниями и наблюдениями. Кстати, об «Атомных дискуссиях» в музее «Атом»: мы собираемся там в доступной для всех форме обсуждать передний край науки, то есть превращение незнания в знание, и здесь, конечно, есть место для столкновения гипотез и различных точек зрения.


 


— Итак, Большой адронный коллайдер не дал чего-то нового для Стандартной модели. Может быть, проблема в том, что это устройство маловато? Может быть, причина «кризиса отсутствия кризисов» именно в том, что есть бюджетные ограничения на мегасайенс-установки? Вот если бы у вас был неограниченный бюджет, что бы посоветовали построить?


— Не будем клеветать на ЦЕРН; там, конечно, установили и устанавливают многое для уточнения большого количества деталей относительно Стандартной модели. Дело в том, что есть ситуации, когда мы не в состоянии эффективно пользоваться уравнениями Стандартной модели. Это прежде всего проблема конфайнмента кварков — то есть невозможность их выхода за переделы протонов, нейтронов и других частиц и существования в свободном виде. Из той части Стандартной модели, которая называется квантовая хромодинамикой, должно следовать, что кварки не могут летать по вселенной по одиночке, но мы не можем в этом убедиться на языке формул. Поведение кварков в том режиме, когда они вроде бы готовы покинуть протон, но все же этого не делают, исследуется на коллайдере, да. Но чего коллайдер не смог сделать — он не смог обнаружить аномалии, то есть расхождение между предсказаниями и наблюдениями в тех случаях, когда мы можем дать надежное теоретическое предсказание. Скажем, если бы коллайдер открыл какие-то новые элементарные частицы, то отсюда следовало бы, что есть какие-то поля, о существовании которых мы до сих пор не подозреваем! Более мягкий вариант, надежда на который еще не окончательно умерла,— что удастся «поймать» косвенные проявления неизвестных частиц в известных процессах.


 


— В чем же проблема? Почему он этого не сделал?


— Проблема, как вы намекнули, действительно в бюджете — в первую очередь в энергетическом, ну а потому и в том, который выражается в деньгах. Дело в том, что кванты гипотетических новых полей могут оказаться очень массивными, а самая знаменитая формула всех времен и народов, ставшая уже мемом, E = m c2, говорит, что масса и энергия — это одно и то же. Большой адронный коллайдер потому такой большой, что только на большом расстоянии мы в состоянии передать протонам необходимую энергию (которую черпают из электрической сети и за которую платят). Когда автомобили сталкиваются, скажем, на полигоне, энергия их движения уходит в деформацию металла и в конце концов в тепло, а когда сталкиваются протоны, энергия уходит в рождение новых частиц. И если ее недостаточно для того, чтобы создать частицы данной массы, они просто и не создаются.


А спрашивается, выручит ли нас коллайдер вдвое больше? Неприятная новость состоит в том, что это неизвестно. Есть термин, выражающий степень отчаяния физиков,— «калибровочная пустыня». Слово «пустыня» в данном случае означает, что вы увеличиваете энергию, но не встречаете новых частиц. И только если вы достигнете энергий, близких к тем, что были при горячем Большом взрыве, когда Вселенная была очень плотная, очень горячая и уже начала расширяться, тогда вы обнаружите все их скрытое многообразие и тем самым гораздо лучше поймете физику Большого взрыва и условия, в которых запускалась эволюция Вселенной к ее современному состоянию. Это было бы очень здорово, но мы не знаем, какой нужен коллайдер, чтобы эти частицы появились.


 


— Нет ли обходных путей, чтобы не строить сверхбольшой коллайдер?


— За последние годы несколько раз различные научные группы брали статистические данные результатов прошлых экспериментов и на Большом адронном коллайдере, и на других ускорителях и переанализировали их, желая найти расхождение между предсказаниями и наблюдением. Дело в том, что все результаты, которые мы получаем из работы ускорителей,— это очень большой объем статистических данных, они требуют обработки. И вот, ура-ура, была радость: обнаружилось расхождение между предсказаниями и теорией. Люди реально радовались, потому что это означало, что сейчас мы получим конкретную проблему, которой нужно будет дать объяснение. Но когда брали еще большую статистику, выяснялось, увы, что расхождений нет. Другая альтернатива — наблюдать за космосом и по оставленным в нем «следам» делать выводы об эпохе сверхвысоких энергий.


 


— Есть теории, которые претендуют на то, чтобы «копнуть» еще более глубокий уровень устройства материи, чем Стандартная модель,— это теория суперструн и теория петлевой квантовой гравитации. Можно ли представить эксперимент, который бы, например, позволил выбрать между этими теориями? И есть ли еще какие-то теории, кроме этих?


— Прежде чем спросить, есть что-то, кроме этих теорий, я бы задал вопрос, а есть ли они? Традиционно физика развивалась таким образом: наблюдались какие-то явления, и для них искались объяснения. Правда, из этого общего правила есть несколько очень ярких исключений. Черные дыры были открыты на бумаге и почти полвека существовали только на бумаге, в виде решения уравнений, и отношение к ним было, мягко говоря, скептическим. А еще до этого Максвелл «поправил» уравнения, которые должны были выражать известные опытные факты, предсказал таким образом факт неизвестный, а затем, найдя подходящее решение своих «поправленных» уравнений, установил электромагнитную природу света. Здесь теория обогнала практику. Но в целом физика откликается на наблюдения и, в частности, развивается, когда нужно объяснять нестыковки в наблюдениях. А две упомянутые вами концепции не служат для объяснения каких-то наблюдений! За ними стоит иная мотивировка: они являются откликом на мечту человечества.


 


— Мечту о чем?


— Два наших краеугольных камня в понимании мира — это квантовая теория и эйнштейновская теория гравитации, которая описывает и тонкие эффекты в Солнечной системе, и отклонение света звездами, и черные дыры, и расширение Вселенной. Но, к сожалению, эти две концепции друг с другом не дружат, и традиционные методы их «женить» друг на друге ни к чему не приводят. Теория струн — это бросок сильно в сторону, в такую область, где их удается примирить, но ценой очень мощного предположения, которое вообще не следует ни из каких наблюдений. Предположения, что в основе мира лежат не элементарные частицы, а одномерно протяженные структуры, так называемые струны. Оказалось, что таким образом можно построить необычайно глубокую и необычайно сложную теорию. В результате нескольких десятилетий ее развития оказалось, что мы фактически только начинаем понимать, что она собой представляет. У нас не хватает математических и вычислительных средств для того, чтобы охватить всю ее полноту. И вот смотрите: наука устроена так, что мы делаем теоретические предположения. Например, закон тяготения Ньютона ниоткуда не следует, это просто предположение, но он отлично описывает и поведение Луны, и падение яблока, и вращение Земли вокруг Солнца, и приливы, и все на свете. Мы его принимаем и пользуемся им до тех пор, пока он работает. «Доказать» ни один закон в физике нельзя: это не математика, там не доказываются теоремы, но требуется убедительный набор свидетельств. Так вот, для теории струн свидетельства отсутствуют. Вот, собственно, и весь сказ про теорию струн. Математически теория струн восхитительна, но ее связь с физикой, может быть, когда-нибудь выяснится, а может быть, и нет.


 


— С теорией петлевой квантовой гравитации такая же ситуация?


— Это совершенно другая концепция по поводу того, как мы можем подружить общую теорию относительности, которая является геометрической теорией, и квантовые принципы. Там вы постулируете, что пространство не является первичной сущностью, а вместо него первичной сущностью являются какие-то более абстрактные явления, графы с вершинами и ребрами. И манипулируя той математикой, которую вы постулируете в качестве базисного уровня, вы пытаетесь объяснить, каким образом на некотором масштабе у наблюдателя появляется иллюзия пространства. Правда, произвести нужно не только пространство, но и время. С ним сложнее. Мое ощущение примерно такое, что в течение лет 20 сторонники этой теории говорят: «Вот сейчас мы поймем что-то очень важное». Все время остается понять что-то важное, а свидетельства, которые служили бы сколько-нибудь явным подтверждением, отсутствуют.


 


— Какой же выход?


— Возможно, мы никогда не узнаем, существует ли нечто единое, лежащее и за гравитацией, и за квантовым миром. Или когда-нибудь узнаем совершенно с другой стороны. Дело в том, что попытка совместить общую теорию относительности, то есть гравитацию, и квант традиционно воспринималась как необходимость «проквантовать» гравитацию. Но кто его знает, может быть, когда-нибудь придется «гравитизировать» квант. Вопрос здесь в том, нет ли внутри квантовой механики каких-то более прямых выходов на геометрию пространства-времени. Пока в этом направлении имеются только правдоподобные рассуждения вместо выводов. Быть может, запутанные частицы оказываются связаны чем-то вроде кротовой норы колоссально малого масштаба; в таком случае пространство-время не первично, а рождается из квантовой запутанности. Здесь есть потенциал совершенно альтернативного взгляда на мироздание. 


 


Опубликовано: Константин Фрумкин«Коммерсант», 7.10.2025
Метки:   Комментарии (0)КомментироватьВ цитатник или сообщество
Rewiever

Откуда берётся масса? ответ может дать JUNO

Воскресенье, 31 Августа 2025 г. 12:47 (ссылка)


 Как подземная обсерватория поможет физикам разгадать загадку массы


 


Китайские ученые запустили самый большой и чувствительный детектор нейтрино — таинственных и почти неуловимых частиц.  Анатолий Глянцев рассказывает о том, как новый прибор может помочь в поисках ответа на один из главных вопросов о глубинных законах Вселенной:


 


26 августа 2025 года в Китае начала работу Цзянмэньская подземная нейтринная обсерватория (Jiangmen Underground Neutrino Observatory, или JUNO). Это крупнейший и самый точный детектор нейтрино среди всех установок своего класса. Проект объединяет более 700 исследователей из 17 стран, хотя основной вклад вносит Китай. Установка должна помочь физикам разгадать загадку, не укладывающуюся в самые надежные, авторитетные и многократно проверенные теории. Это вопрос о том, откуда берется масса у частиц, которые по всем известным физическим законам не должны её иметь.


 


30av25_JUNOfbs1 (570x353, 204Kb)


 


Вселенная на весах


Все на свете состоит из элементарных частиц. Любое явление, от взрыва сверхновой до дружеского объятия, в конечном счете сводится к взаимодействию между частицами. Законы, управляющие ими, и есть самые фундаментальные законы Вселенной. Вот пример «детского» вопроса, за ответом на который придется прогуляться в мир элементарных частиц. Почему мы сами и все предметы вокруг нас имеют массу? 


Ваши напольные весы показывают суммарную массу частиц, из которых вы состоите. Но не все элементарные частицы в мире имеют массу. Например, масса фотона — частицы света — равна нулю. Раз одни частицы имеют массу, а другие нет, этому должна быть причина.


Начнем с того, что человек состоит из атомов. Атом же состоит из ядра и движущихся вокруг него электронов. Атомное ядро, в свою очередь, составлено из протонов и нейтронов. Протон и нейтрон близки по массе и примерно в 1800 раз тяжелее электрона. Они и составляют почти всю массу человеческого тела: на долю электронов приходятся какие-то граммы.


Протоны и нейтроны состоят из более фундаментальных частиц — кварков. Кварки притягиваются друг с другу с огромной силой. Масса протона или нейтрона складывается из собственной массы кварков и энергии их притяжения, пересчитанной в массу по знаменитой формуле E=mc2. На эту энергию и приходится более 99% массы протонов и нейтронов, а, следовательно, и человеческого тела.


Осталось разобраться, почему имеют массу сами кварки, а также электроны, вклад которых мал, но вполне заметен. В двух словах их наделяет массой поле Хиггса, частицу которого — тот самый бозон Хиггса — обнаружили в 2012 году на Большом адронном коллайдере.


Кажется, что загадка массы полностью разгадана. По крайней мере, Стандартная модель — главная теория в физике элементарных частиц — не предлагает никаких других механизмов, наделяющих массой какие бы то ни было частицы.


Между тем такие механизмы есть. Это значит, что существуют фундаментальные законы материи, о которых Стандартная модель «не подозревает». Физики только начинают подступаться к этим законам. Ключ к ним кроется в почти неуловимой частице — нейтрино.


 


Загадочные невидимки


Нейтрино вездесущи. Каждую секунду каждый квадратный сантиметр вашего тела насквозь прошивают десятки миллиардов этих частиц, рожденных в центре Солнца. Они образуются также в атомных реакторах, в недрах земного шара, где распадаются радиоактивные элементы, в атмосфере, где космические частицы сталкиваются с атомами воздуха — практически везде, где идут хоть какие-то ядерные реакции.


Существует не один, а три вида нейтрино: электронное, мюонное и тау-нейтрино. Стандартная модель четко указывает, что все три, во-первых, не имеют массы, а во-вторых, не превращаются друг в друга. Однако многочисленные эксперименты убедили физиков, что такие превращения происходят. Единственное возможное объяснение — нейтрино имеют массу, пусть и небольшую. За открытие «перевоплощений» нейтрино Такааки Кадзита и Артур Макдональд в 2015 году получили Нобелевскую премию по физике. И было за что: это ни много ни мало единственный надежный экспериментальный результат, противоречащий Стандартной модели.


Этот факт может показаться мелкой досадной неувязкой в великолепном здании физики элементарных частиц. Но нелишне напомнить, что величайшие физические теории XX века — квантовая механика и теория относительности — тоже начались с попыток сгладить «небольшие шероховатости» в существовавших тогда идеях. Трудный опыт научил физиков: когда речь идет о фундаментальных законах мироздания, неважных вопросов не бывает.


Какова же масса нейтрино и, главное, откуда она берется? Какими законами нужно дополнить Стандартную модель, чтобы уложить в нее этот странный факт? Ответы на эти вопросы и будут искать физики с помощью нового детектора.


 


Истина в скорлупе


Строго говоря, JUNO фиксирует не сами нейтрино, а их античастицы — антинейтрино. Однако массы нейтрино и антинейтрино равны, и вообще эти частицы так похожи, что на различии между ними можно не останавливаться. Изучая антинейтрино, физики тем самым изучают и нейтрино. Есть даже гипотеза, что нейтрино и антинейтрино — это одна и та же частица. Возможно, данные JUNO помогут её проверить.


Антинейтрино, как и нейтрино, почти не взаимодействуют с остальной материей. Этот не так уж плохо, если вспомнить, сколько «невидимок» ежесекундно пронзает наше тело. Вступи хоть каждая тысячная из них в реакцию с атомами нашего тела, и нам туго бы пришлось. Но для физиков этот факт является головной болью: как изучать то, что почти никак себя не проявляет?


К счастью, «почти никак» не означает «совсем никак». Изредка эти частицы все же снисходят до реакции с атомными ядрами. Задача детектора — зафиксировать такие события. 


Сердце JUNO — камера, заполненная 20 000 т прозрачной жидкости. Эта огромная масса должна обеспечить регистрацию всего около 40 антинейтрино в сутки. Вот с какой неуловимой субстанцией приходится иметь дело физикам.


Когда антинейтрино все-таки врезается в протон атомного ядра, возникают два фотона: один мгновенно, другой спустя 0,2 миллисекунды. Толщу прозрачной жидкости просматривают 15 000 датчиков, готовых зарегистрировать это излучение.


Однако антинейтрино — не единственные претенденты на реакцию с веществом детектора. В атомные ядра врезаются и космические лучи, и продукты распада мельчайших радиоактивных примесей, содержащихся в любом материале. Причем те и другие делают это куда чаще высокомерных «невидимок».


Чтобы долгожданный привет от антинейтрино не утонул в фоновом шуме, специалисты превратили детектор в матрешку. Мишень детектора окружена слоем сверхчистой воды. Это одновременно и защита от посторонних частиц, и система предупреждения. Когда слой воды пересекают частицы космических лучей — но не антинейтрино — они испускают характерное свечение. Так что ученые по крайней мере знают о вторжении непрошенных гостей. Выше расположена пленка из особо прочного полимера. Вертикально над детектором находится еще один бассейн с очищенной водой и дополнительный детектор космических частиц.  Вся конструкция упрятана на глубину 700 м.


Вся эта многослойная броня, заставляющая вспомнить сказку о кощеевой смерти — не помеха для антинейтрино, с легкостью пронизывающих даже земной шар. От посторонних частиц она тоже защитит не полностью, но сведет их поток к приемлемому уровню. В итоге JUNO будет измерять энергию антинейтрино с рекордной точностью.


Основной источник антинейтрино для обсерватории — это реакторы двух промышленных атомных электростанций. Место для детектора выбрано так, чтобы расстояние до реакторов было одинаковым: 53 км. Точно знать расстояние до источника антинейтрино очень важно для изучения свойств этих загадочных частиц. Тем не менее в поле зрения детектора попадут также антинейтрино от Солнца, земных недр, верхних слоев атмосферы и даже вспышек сверхновых, если таковые случатся в ближайших галактиках.


Детектор рассчитан как минимум на 30 лет службы с возможностью модернизации. За это время он накопит множество чрезвычайно точных данных. Исследователи надеются, что эта информация прольет свет на загадку массы нейтрино и стоящую за ней новую физику.


 


Автор и источник: Научный обозреватель Forbes Анатолий Глянцев, «Форбс.ру»


 
Метки:   Комментарии (0)КомментироватьВ цитатник или сообщество
Rewiever

Прецизионные результаты в мюонной физике

Пятница, 07 Июня 2025 г. 00:01 (ссылка)


Фермилаб уверенно завершил эксперимент по проверке Стандартной модели,


точку в котором всё же поставят исследования в Новосибирске


 


3 июня 2025 года международная коллаборация Muon g-2 сообщила итоговую величину аномального магнитного момента мюона (АМММ), измеренную в эксперименте, который в течение последнего десятилетия проводился в Фермилаб (США). Была достигнута рекордная в мире точность 127 миллиардных долей, или около 0.000013%.




3n25_Muong2s (640x455, 353Kb)


 


Неделю назад, 27 мая 2025 года, коллаборация  Muon g-2 Theory Initiative опубликовала актуальный расчет величины АМММ, предсказанной СМ. Точность теоретического расчета пока что уступает эксперименту. Результаты измерения и расчета прекрасно согласуются между собой, что означает, что СМ прошла проверку на новом уровне точности. Институт ядерной физики им. Г.И. Будкера СО РАН (ИЯФ СО РАН) входит в обе коллаборации. В значительной степени именно прецизионные результаты, получаемые на коллайдере ВЭПП-2000, определяют точность теоретического предсказания АМММ. В ближайшие несколько лет новосибирские физики планируют масштабную модернизацию коллайдера ВЭПП-2000, которая позволит повысить точность предсказания АМММ в несколько раз и сделает её сопоставимой с точностью нового измерения Фермилаб.АМММ, который измерялся в эксперименте Muon g-2, это дополнительный вклад в величину магнитного момента мюона, который возникает из-за того, что мюон взаимодействует с виртуальными частицами, которые все время рождаются и исчезают даже в пустом пространстве, в вакууме. 


Уникальность АММ мюона состоит в том, что он очень чувствителен к вкладу всех частиц и сил, которые существуют в природе – даже тех, которые не описываются СМ. АМММ есть у любой заряженной частицы, но наиболее интересно его изучать именно у мюона, потому что по меркам микромира мюон живет относительно долго (целых 2 микросекунды), что позволяет провести измерение с очень высокой точностью. Еще одно преимущество мюона в том, что он более чем в 200 раз тяжелее электрона, и его АММ гораздо чувствительней, примерно в 43000 раз, к вкладу тяжелых частиц – а именно такие новые частицы предсказывают многие модели, расширяющие СМ. Под расширениями СМ физики подразумевают более общие теории, которые предсказывают и описывают явления за рамками существующей теории микромира, иногда их также называют теориями Новой физики.


Эксперимент Muon g-2 стартовал в 2017 г. Он стал продолжением предыдущего измерения АМММ, который проводился в Брукхейвенской лаборатории (БНЛ, США) в конце 90-х – начале 2000-х. Часть оборудования, в том числе мюонное накопительное кольцо, было перевезено из БНЛ в Фермилаб. Более десяти лет специалистам потребовалось, чтобы спланировать и подготовить эксперимент. В 2017 г. начался набор данных, который продолжался в течение шести лет. За этот период коллаборация два раза объявляла результаты измерения АМММ (в 2021 г. и в 2023 г.), которые были основаны на обработке части набранных данных. Уже тогда эксперимент был более чем в два раза точнее результата БНЛ. В 2025 г. Фермилаб поставил финальную точку – результат, объявленный 3 июня, получен на основе полного массива данных, а эксперимент считается завершенным.


«Это очень волнующий момент, мы не только достигли своих целей, но и превзошли их, что не так-то просто для таких точных измерений», – прокомментировал руководитель коллаборации Muon g-2, физик Аргоннской национальной лаборатории Питер Винтер в официальном пресс-релизе Фермилаб.


 


«Muon g-2 очень успешный эксперимент по многим параметрам, – добавил заместитель директора ИЯФ СО РАН по научной работе, заведующий кафедрой физики элементарных частиц НГУ член-корреспондент РАН Иван Логашенко. – Чтобы настолько увеличить точность, потребовалось набрать в 20 раз больше данных, чем в эксперименте Брукхейвенской лаборатории, а это само по себе является огромным достижением. Удалось снизить все неточности эксперимента на беспрецедентном уровне. Над экспериментом трудилась международная коллаборация из 200 физиков многих стран мира, в том числе из России, из нашего Института. На данный момент – это самое точное измерение АМММ. В ближайшие 10 лет на ускорительном комплексе J-PARC (Япония) планируют сделать свое измерение АМММ и, возможно, побить рекорд Фермилаб, но это еще очень далекое будущее».


ИЯФ СО РАН принимает участие, как в завершившемся эксперименте Muon g-2, так и в работе коллаборации Muon g-2 Theory Initiative.


...


«Суть того способа, который позволяет провести всеобъемлющую проверку СМ, состоит не только в измерении АМММ, но и в сравнении получившегося значения с той величиной АМММ, которую предсказывает СМ, – пояснил Иван Логашенко. – Совпадение этих чисел означает, что теория верна и что мы всё в ней понимаем на том уровне точности, которого достигли. Если же разница между ними большая, это говорит об обратном, что мы видим явления за рамками СМ».


В 2023 г. Muon g-2 представил результат измерения АМММ, основанном приблизительно на 1/3 всех данных, набранных в эксперименте. На тот момент предсказание СМ было основано на расчете, проведенным коллаборацией Muon g-2 Theory Initiative и опубликованным в 2020 г. Разница между двумя этими значениями тогда была довольно большой – почти пять стандартных отклонений, или пять сигм. Этот факт в физическом сообществе обсуждался, как потенциальное наблюдение Новой физики, то есть физики за рамками Стандартной модели. Точность измерения АМММ составила 0.000013%, что в четыре раза улучшает точность измерения БНЛ 2001 г.


 


Полный текст и иллюстрации: сайт ИЯФ СО РАН


 
Метки:   Комментарии (0)КомментироватьВ цитатник или сообщество
Rewiever

Теоретики заглядывают в будущее

Среда, 20 Августа 2003 г. 23:42 (ссылка)


Кто откроет бозон Хиггса?



 



По традиции в начале июля- 2003 в Протвино состо­ялся Междуна­родный семинар по фундамен­тальным пробле­мам физики вы­соких энергий и теории поля. На 26-ую по счету встречу собра­лись теоретики преимущественно из России (Моск­ва, Протвино, Дубна, Санкт-Петер­бург), а также из Англии, Фран­ции и США.  В течение 3 дней говорили о «сокровенном». А именно о том, откроет ли «частица бо­га», или бозон Хиггса, свою тайну американским физикам.



2003semihep (508x356, 236Kb)В силу объявленной на сей раз те­матики семинара («пространственно - временные структуры в микро- и макрокосмосе») собравшиеся теорет­ики изящно оперировали понятия­ми, выходящими далеко за рамки наших обыденных представлений о пространстве и времени. Не случай­но в своих комментариях к происхо­дящему один из «хозяев поля», за­меститель начальника теоретическо­го отдела ГНЦ ИФВЭ профессор Вла­димир Петров заметил, что физики сегодня подходят к пониманию того, что даже бывшие уделом писате­лей-фантастов представления о пу­тешествиях во времени не так уж беспочвенны. Что интересно — усло­жнение представлений о сокрытых пока тайнах мироздания происходит не вопреки, а благодаря попыткам ученых «навести порядок» в накоп­ленных экспериментальных резуль­татах и теоретических разработках.


Один из ключевых вопросов совре­менной физики высоких энергий — подтверждение   или   опровержение  существования теоретически пред­сказанной еще в 1964 году шотланд­ским физиком Питером Хиггсом эк­зотичной субатомной частицы, назы­ваемой бозоном Хиггса (Higgs boson, Н) — по сути, единственного недос­тающего звена Стандартной модели элементарных частиц. Предполагает­ся, что бозон Хиггса сыграл основ­ную роль в механизме, посредством которого некоторые частицы (квар­ки, лептоны) во время Большого взрыва приобрели массу, а другие ос­тались безмассовыми (фотоны).



Помимо полей, «отвечающих» за тройку фундаментальных взаимо­действий (электромагнитное, силь­ное и слабое), в Стандартной модели предполагается наличие еще одного скалярного поля, которое неотдели­мо от пустого пространства, не сов­падает с гравитационным и называется полем Хиггса (Хиггс в своё вре­мя выдвинул гипотезу, что простран­ство между частицами как бы запол­нено тяжелой, вязкой субстанцией). Считается, что все фундаментальные частицы приобретают массу в ре­зультате взаимодействия с этим вез­десущим полем (тяжелые частицы взаимодействуют с полем Хиггса сильнее, легкие — слабее). В силу корпускулярно-волнового дуализма нолю Хиггса должна соответствовать по крайней мере одна частица — по­средник, квант этого поля, собствен­но бозон Хиггса (бозон — потому что частицы Хиггса подчиняются стати­стике Бозе-Эйнштейна). Драматизм ситуации состоит в том, что если «хиггс» будет обнаружен, то запол­нится прямо-таки зияющая лакуна в основании Стандартной модели и подтвердится правильность нашего понимания Вселенной (а до сих пор Стандартная модель, в общем-то, не терпела поражений, напротив, полу­чала одно блестящее подтверждение за другим). Но если будет доказано, что  бозона Хиггса нет, то это откроет путь для целого ряда альтернативных теорий, давно гото­вых заменить Стандартную модель, — вплоть до всякой экзотики с «па­раллельными Вселенными» или «вы­сшими измерениями».



Предыдущие эксперименты показа­ли, что, если мистическая частица действительно существует, то она должна иметь массу между 114 и 211 гигаэлектронвольтами (ГэВ). Кстати говоря, подобных частиц мо­жет быть в принципе и сразу не­сколько... Трудности, стоящие на пути открытия «хиггса» были столь велики, а его предполагаемая роль столь важна, что частица получила ироническое прозвище «частица бо­га», хотя многих физиков от этого «псевдонима», пущенного для эф­фектности СМИ, просто коробит.



В 2000 году одна из групп ядерщи­ков ЦЕРНа уже заявила о том, что им удалось зафиксировать распад «хиггса» с массой 114 ГэВ, но потом исследователи сами же усомнились в своих результатах. Речь идет о серии экспериментов ALEPH (Apparatus for LEP Physics) на LEP (Large Elec­tron Positron Collider) — Большом электрон-позитронном коллайдере, который функционировал в течение 11 лет (с 13 ноября 1989 года по 2 ноября 2000 года) и должен теперь передать эстафету более мощной ус­тановке — LHC (Large Hadron Collid­er) — Большому адронному коллайдеру, введение в строй которого ожи­дается только в 2007 году. Этот суперколлайдер, рассчитанный на энергию протонов 14 ТэВ, предназначен не только для поиска бозона Хиггса, но и для обнаружения возможных про­явлений суперсимметрии, а монти­руется он в том же 27-километровом тоннеле, в котором находился LEP.



Казалось, что эта вынужденная от­срочка давала шанс американцам опередить своих европейских коллег и конкурентов: специально для этого был за 260 млн. долларов отрестав­рирован протон-антипротонный ус­коритель Tevatron(«Тэватрон»), принадлежащий Национальной лаборатории высокоэнергетических ис­следований имени Энрико Ферми (Fermilab, Fermi National Accelerator Laboratory— FNAL) в Батавии (штат Иллинойс). Однако коллайдер, которому испол­нилось уже 20 лет, так и не смог за­быть свой преклонный возраст и выйти на расчетную мощность, к то­му же физиков приводят в уныние длительные периоды обслуживания и ремонта между экспериментами.


Теперь из расписания эксперимен­тов на «Тэватроне», представленного  американскому Министерству энергетики (которое финансирует работу коллайдера), выясняется, что самая ранняя дата, когда будет получено конкретное до­казательство существования бозона Хиггса (или уточнение энергетичес­ких рамок его возможного существо­вания  при неудаче), — это 2009 год. Но к тому времени должно уже пройти два года, как войдет в строй более мощный европейский LHC, и на него к тому времени будут обра­щены взоры всего научного сообще­ства. К тому же единственное, на что будет способен «старичок» Tevatron к 2009 году — это проверить всё тот же диапазон до 115 ГэВ, уже освоен­ный «приказавшим долго жить» же­невским LEP.


А вот LHC задуман до­статочно мощным для того, чтобы изучить оставшуюся часть возмож­ных значений масс частицы вплоть до 211 ГэВ и вывести окончательный вердикт о существовании или несу­ществовании загадочной частицы.



Опубликовано: газета ИФВЭ "Ускоритель" - 20 августа 2003 г.


Примечание: несколько ранее более краткий вариант текста и прилагаемое фото были опубликованы в «Известиях» 

Метки:   Комментарии (0)КомментироватьВ цитатник или сообщество
Rewiever

Прорваться за пределы Стандартной модели

Понедельник, 02 Мая 2023 г. 00:41 (ссылка)


«Предвкушение получения новых данных – самое интересное для учёных»


lebedev1 (150x97, 5Kb)  Ученые ФИАН играют важную роль в эксперименте Belle II, который проводится на электрон-позитронном коллайдере SuperKEKB. О том, какие проблемы стоят перед современной физикой элементарных частиц, как устроен эксперимент и каких открытий можно ожидать в ближайшем будущем, рассказал доктор физико-математических наук, член-корреспондент РАН, главный научный сотрудник лаборатории тяжелых кварков и лептонов ФИАН Павел Николаевич Пахлов.



 


     Физика элементарных частиц изучает, как устроена материя на самом глубинном уровне – сейчас наука имеет возможность исследовать законы физики на масштабах одной тысячной размера протона. Ученые, работающие в этой области, пытаются выяснить, из каких «кирпичиков» складывается окружающий нас мир, и какими силами они друг к другу притягиваются. Роль «кирпичиков» играют разнообразные частицы, такие как электроны и кварки, а силы – это фундаментальные взаимодействия четырех типов. Самым первым из них была обнаружена гравитация, и по иронии судьбы сейчас именно ее ученые понимают хуже всего.


    Другие три взаимодействия удалось описать единым образом, и все они участвуют в формировании материи. Электромагнетизм собирает из заряженных частиц (ядер и электронов) атомы и отвечает за всю химию. Ядра, в свою очередь, формируются так называемым сильным взаимодействием, которое также ответственно за удержание в протонах и нейтронах еще более маленьких частиц, кварков. Последнее взаимодействие – слабое – долгое время казалось ненужным, однако в тридцатые годы прошлого столетия выяснилось, что именно благодаря ему существуют термоядерный синтез, отвечающий за горение звезд и обеспечивающий нас энергией.


    Объединение электромагнитного, сильного и слабого взаимодействий на основе калибровочного принципа произошло в шестидесятых годах двадцатого века. Ученым удалось создать достаточно красивую модель, названную "Стандартной". Она хорошо описывала все известные на тот момент частицы, и более того, сумела предсказать обнаружение новых. В 2012 году на Большом адронном коллайдере (БАК) после многолетних поисков была обнаружена последняя частица Стандартной модели – бозон Хиггса.


 


    Несмотря на все успехи и достоинства этой теории, физики имели к Стандартной модели претензии еще с момента её создания.


Первым её недостатком считается то обстоятельство, что она искусственно подстроена под описание экспериментальных данных, а не выведена исходя из какого-то фундаментального первого принципа. Следующее слабое место проявилось при попытке использовать Стандартную модель для описания Вселенной, причем не только ее нынешнего вида, но и эволюции. Астрофизика и космология требуют новых ингредиентов, таких как взаимодействия, нарушающие барионное число, или частиц, ответственных за быстрое раннее расширение (инфляцию), не заложенных в Стандартную модель. Но, возможно, это проблемы космологии, а не теории частиц? Однако в девяностые годы оказалось, что существует такой таинственный объект как темная материя. При расчете масс галактик для описания движения звезд выяснилось, что должно существовать огромное количество материи, которая является невидимой, а значит, не участвует в электромагнитном взаимодействии и не описывается Стандартной моделью. Наконец, третья претензия – техническая: при расчетах на больших масштабах энергии взаимодействий в модели появляются противоречия. Сегодня физики ставят перед собой задачу построить новую теорию, лишенную недостатков Стандартной модели, однако пока что сложно даже наметить её контуры.


 


p_paxlov2 (135x160, 27Kb)  «Сейчас в нашей области физики наступает кризис (а в науке это прекрасно, это заставляет людей больше думать, позволяет совершить прорыв): почти все эксперименты удовлетворительно описываются неудовлетворительной теорией. Но мы уже подошли к той черте, за которой Стандартная модель должна сломаться. Поэтому существует уверенность, что скоро мы найдем что-то, что укажет, в каком направлении должна двигаться теория», – объясняет Павел Николаевич.


    Существует два возможных направления развития экспериментальных исследований. Одно из них – увеличение энергии в экспериментах по столкновению частиц. Создание Большого адронного коллайдера позволило в несколько раз поднять энергетическую планку. Хотя исследования на БАК ведутся уже более десяти лет, ученым пока не удалось обнаружить никаких отклонений от Стандартной модели. Увеличить энергию в существующей конфигурации почти невозможно, поэтому в настоящий момент идут работы по поднятию светимости (количества соударений частиц в секунду), что позволит увеличить вероятность обнаружения каких-то редких событий.


    Второе направление – поиск редких явлений при относительно невысоких энергиях взаимодействия. Демонстрировать отклонение от предсказаний Стандартной модели могут и довольно легкие частицы. Примером может служить аномальный магнитный момента мюона, масса которого в десять раз меньше массы протона, но который чувствует существование частиц тяжелее протона в сотни и даже тысячи раз. Другие интересные частицы, изучением которых как раз и занимается группа Павла Николаевича, – B-мезоны. В них содержится тяжелый b-кварк, аналогичный d-кваркам – составным частям протонов и нейтронов, но имеющий гораздо большую массу и быстро распадающийся. Интерес к этим частицам Павел Николаевич объясняет так:


    «Тяжелые кварки "знают" все физические законы, в том числе и то, что происходит при больших энергиях. За время до распада B-мезоны успевают "вспомнить" всю физику от начальных классов до неизвестных ученым закономерностей, и изучая такие распады, мы как бы "допрашиваем" частицы о том, как устроена физика, причем и на энергиях пока для нас недостижимых. Чем тяжелее частица, тем ближе ей эта интересующая нас шкала высоких энергий».


p_paxlov_1s (448x298, 222Kb)      Рождаются B-мезоны парами при столкновениях   электронов и позитронов. За время жизни, составляющее   несколько пикосекунд, они успевают пролететь расстояние   порядка сотни микрон, а затем за счет слабого   взаимодействия происходит распад. Напрямую B-мезоны   обнаружить нельзя, регистрируются только продукты их   распада. Получившиеся частицы также нестабильны и   распадаются на еще более легкие. Задача физиков – по   результатам измерений восстановить всю цепочку распадов,   рассчитать её свойства и сверить с моделью. Если в   результате   обнаружат расхождение с теорией, то это и будет   свидетельствовать об отклонении от Стандартной модели.


На мезонной фабрике SuperKEKB (изображение с 24hitech.ru)


 


    Эксперимент Belle II, в котором принимают участие ученые   ФИАН, проводится на ускорителе, расположенном в   японском   городе Цукуба. На протяжении двадцатого века   Япония имела сильную школу теоретической физики, однако   в области больших экспериментов традиционно   соревновались между собой США и Европа (иногда СССР). В   восьмидесятые годы Япония включилась в эту гонку,   построив первый свой крупный ускоритель. Эксперименты на нём оказались неудачными, однако позднее в этом же тоннеле была построена B-фабрика (KEKB), называемая так за большое количество рождаемых в столкновениях B-мезонов. Она проработала более 10 лет и дала множество важных, интересных и подчас неожиданных результатов. Два года назад был официально запущен ускоритель следующего поколения – SuperKEKB, который позволит увеличить количество рождаемых B-мезонов на два порядка. Этот ускоритель гораздо скромнее Большого адронного коллайдера, как по размерам (подземное кольцо диаметром 4 км), так и по масштабам денежных вложений. Однако его преимущество – огромное число сталкивающихся электронов и позитронов. При наличии большого числа частиц основной проблемой является их удержание: необходимо провести частицу, не теряя, по кольцу тысячи раз, при этом пучки удерживаются с точностью в нескольких нанометров. Успешно решить задачу удалось за счёт продвинутой магнитооптической системы, а рекордная светимость была достигнута сильным сжатием пучков в точке взаимодействия.


p_paxlov_2 (444x228, 81Kb)   Помимо ускорителя успех эксперимента определяется детектором. Уже сейчас ясно, что сконструированный детектор, в создании которого активное участие принимали ученые ФИАН, получился удачным. Детектор представляет собой «сэндвич» из под-детекторов, каждый из которых предназначен для решения конкретной задачи. Около точки взаимодействия расположены вершинные детекторы размером всего около 10 сантиметров из кремниевых пластинок, которые измеряют трек частиц с точностью до десятков микрон; данные с них считываются десятками тысяч электронных каналов. Чуть дальше расположена дрейфовая камера, которая реконструирует треки продуктов распада B-мезонов.


Схема детектора эксперимента Belle II 


По изгибу трека в магнитном поле измеряется импульс частицы, а для определения типа частицы используется черенковский детектор, принцип действия которого был разработан в ФИАН в середине прошлого века. Следующей частью детектора является калориметр, регистрирующий фотоны. Наконец, на наибольшем удалении от зоны взаимодействия стоит созданная нашими учеными мюонная система. Мюоны мало взаимодействуют с веществом, поэтому пролетают дальше других частиц и попадают в сцинтиллятор – вещество, излучающее свет при прохождении сквозь него частиц. Эта система состоит из большого количества слоев и является самой большой по объёму и весу – суммарно она покрывает площадь более тысячи квадратных метров. Сцинтилляционный пластик, используемый в системе, был произведен в России по особой технологии, позволяющей очень эффективно собирать сцинтилляционный свет.


 


    Российские физики из ФИАН регулярно бывают в Японии: они не только обрабатывают экспериментальные данные и обсуждают результаты, но и следят за правильной работой детектора. Работа ускорителя обходится очень дорого (потребляемая им мощность сравнима с мощностью целой электростанции), поэтому нельзя, чтобы ускоритель работал вхолостую, детектор должен функционировать и записывать интересные события постоянно. За секунду происходит около миллиарда столкновений, большинство из которых неинтересные, поэтому электроника детектора должна очень быстро принимать решение – сохранить считываемое событие или нет (записывать все подряд просто физически невозможно). Электроника работает на пределе возможностей, и часто возникают сбои, так что ученым приходится перезагружать систему или останавливать её для ремонтных работ.   В данный момент идет процесс настройки детектора и плавного увеличения светимости. Павел Николаевич оптимистично смотрит в будущее:


  «Пока в нашем эксперименте только начался набор данных, почти никаких результатов еще нет, и мы можем говорить только о планах. Предвкушение получения новых, никем пока не исследованных данных – самое интересное время для ученых, особенно для молодых. Обычно кажется, что если в какой-то области произошло открытие, то это очень интересная область. Но ведь открытие уже сделано, значит, скорее всего, дальше все будет скучно. А у нас уже очевидно, что ускоритель и детектор работают, значит скоро нас ожидает целый поток новых данных. Велики шансы, что в ближайшие лет пять будет открыто что-то, указывающее направление развития физики элементарных частиц на следующие десятилетия».


 


К. Кудеяров, «ФИАН-информ»
Метки:   Комментарии (0)КомментироватьВ цитатник или сообщество
Rewiever

С.Афонин (СПбГУ) предсказал "тяжелый Хиггс"

Вторник, 22 Апреля 2025 г. 23:08 (ссылка)


Второй бозон Хиггса?


 


standmod1 (300x225, 45Kb)Наблюдение в ЦЕРНе ранее предсказанного бозона Хиггса как будто бы завершило эпоху открытий фундаментальных элементарных частиц. На самом же деле вопросов к Стандартной модели (см.) меньше не стало - она может объяснить далеко не все явления. Например, непонятно, почему во Вселенной почти нет антивещества (проблема барионной асимметрии Вселенной), почему нейтрино имеют хоть и ничтожно малую, но ненулевую массу, почему вакуум Стандартной модели выглядит метастабильным (измеренная масса частицы Хиггса лежит в узкой области между границами стабильности и нестабильности вакуума), почему масса бозона Хиггса относительно невелика, хотя ожидаемый вклад от квантовых поправок на очень малых расстояниях, согласно современной теории, должен вести к гигантским значениям этой массы. Наконец, осталась загадкой природа темной материи.



«Есть довольно старая, но всё еще привлекательная идея, что существуют другие бозоны Хиггса, которые влияют на "стандартный". Расширение Стандартной модели хотя бы на одну такую частицу потенциально может "одним махом" объяснить вышеупомянутые несостыковки. На эту тему есть немало работ, однако здесь остро встает вопрос о величине массы второго бозона Хиггса, так как от нее решающим образом зависит то, как именно можно решить имеющиеся проблемы на уровне количественных предсказаний, а также понять, по каким признакам искать такую частицу в экспериментах на Большом адронном коллайдере», - рассказывает автор новой работы Сергей Афонин, доктор физико-математических наук, профессор кафедры физики высоких энергий и элементарных частиц, руководитель лаборатории теории ядра и элементарных частиц имени В. А. Фока Санкт-Петербургского государственного университета.


 


2011xiggsdisplay1 (448x299, 142Kb)Исследователь разработал теоретическую модель, которая позволила предсказать массу второго гипотетического бозона Хиггса. В основе концепции лежит идея о том, что бозон Хиггса может быть составной частицей, части которой очень сильно связаны, наподобие того, как кварки сильно связаны внутри протонов и нейтронов.


Идея «композитного Хиггса» часто используется для решения проблемы стабилизации его массы, обеспечивая «защиту» от быстро растущего вклада квантовых поправок: проще говоря, величина массы стабилизируется размером «внутренних частей». При очень сильной связи «структурных частей» между собой могут появляться некоторые универсальные характеристики, что, при определенных предположениях, позволяет описывать систему без знания конкретной природы этих «частей». В квантовой теории поля на этом основан так называемый голографический подход, изначально возникший в теории струн. Именно в рамках такого подхода и была построена модель. Сначала, в совместной работе исследователя с коллегами, она была успешно протестирована на описании масс известных легких частиц, составленных из кварка и антикварка, где также имеет место сильная связь составных частей, а затем применена к Стандартной модели. Расчеты показали, что второй бозон Хиггса имеет массу примерно в четыре раза больше первого, однако доказать его существование еще предстоит.


21ap23_afonin2 (380x255, 73Kb)«Современный уровень согласия теории и эксперимента показывает, что частицы Стандартной модели напрямую не взаимодействуют или почти не взаимодействуют с какими-то другими гипотетическими частицами. Исключение составляет бозон Хиггса, для которого пока нет сильных экспериментальных ограничений. Это указывает на то, что из частиц Стандартной модели второй бозон Хиггса, скорее всего, заметно взаимодействует только с известным бозоном Хиггса, поэтому в образовании масс других элементарных частиц не участвует. Тогда эта частица, по определению, не является бозоном Хиггса. Более интригующий вариант: она действительно бозон Хиггса, но не в нашем "светлом" мире наблюдаемых элементарных частиц, а в "темном" мире ненаблюдаемых частиц темной материи. Тогда, если уж прибегать к популярным метафорам, её, вероятно, было бы точнее называть не второй "частицей Бога", а "частицей антипода Бога". Если она существует и физики научатся экспериментально наблюдать её эффекты, то мы как бы приоткроем портал в мир темной материи, находясь в земной лаборатории», — поясняет Сергей Афонин (см.).



 


Напомним, что в настоящее время эффекты темной материи наблюдают только в космологических масштабах. Например, именно темная материя ответственна за своего рода «хаос» в наблюдаемых законах движения звезд во многих галактиках. Причем, по современным данным, её общая масса почти в пять раз превышает массу обычной материи.


«Довольно неожиданным в предсказанном значении массы второго бозона Хиггса стало то, что она практически в точности соответствует максимальной вероятности распада такой частицы на топ-кварк и топ-антикварк — самых тяжелых частиц в нынешней Стандартной модели. При этом масса обычного бозона Хиггса соответствует максимальной вероятности распада на глюоны — переносчики сильного взаимодействия, являющиеся, как и фотон, безмассовыми векторными бозонами. В будущем было бы интересно исследовать подмеченное соответствие, что могло бы дать новые, независимые аргументы в пользу существования второго бозона Хиггса с предсказанной массой, а следовательно, сильнее мотивировать физиков к его целенаправленному поиску в планируемых экспериментах на Большом адронном коллайдере», — подводит итог Сергей Афонин.


Результаты работы, поддержанной грантом Российского научного фонда, опубликованы в журнале Physics Letters


Текст РНФ 20.04.2023

Метки:   Комментарии (0)КомментироватьВ цитатник или сообщество
Rewiever

Долгий путь к уточнению Стандартной модели

Вторник, 18 Апреля 2023 г. 22:03 (ссылка)


Новый результат новосибирских учёных в области поиска «Новой физики»



Результаты исследований новосибирских физиков показывают, что вероятность рождения пары пионов в результате столкновения пучков электронов и позитронов выше, чем данные, которые учёные в мире получали последние 60 лет. Эти новые знания связывают с существованием т. н. «Новой физики».



2000vepp_1srs (327x222, 66Kb)О полученных результатах журналистам рассказали во вторник на конференции, прошедшей в Институте ядерной физики им. Г.И. Будкера СО РАН. С 2013 по 2020 г. ученые ИЯФ СО РАН проводили эксперименты с помощью детектора КМД-3 на коллайдере ВЭПП-2000 ("встречные электрон-позитронные пучки с энергией 2000 МэВ", сооружен в начале 2000-х, модернизирован в середине "десятых"). Специалисты измеряли вероятность рождения пары пионов в результате столкновения пучков электронов и позитронов. Эту вероятность используют для расчета вклада в аномальный магнитный момент мюона (АМММ), отражающий силу взаимодействия частицы с магнитным полем. АМММ предсказывается Стандартной моделью, но данные, полученные в экспериментах в течение последних 60 лет, отличаются от предсказанных. Это значит, что могут существовать еще не известные частицы и силы ― «Новая физика».



Каждая заряженная элементарная частица является и маленьким магнитом, проворачивающимся в магнитном поле, а по углу его поворота измеряется величина АММ. Мюоны хороши для исследований тем, что физики умеют получать эти частицы в больших количествах, а кроме того, они живут относительно долго ― 2 микросекунды. Мюон в 200 раз тяжелее электрона, а его АММ чувствительней к вкладу тяжелых частиц в 40000 раз.


«Поэтому именно для мюона интереснее всего сравнить величину АММ, измеренную в эксперименте, с предсказанием Стандартной модели. Если мы увидим отличие, то это указывает на «Новую физику» ― что существуют какие-то силы и частицы, которые вносят свой вклад в АММ и которые мы не учитываем в Стандартной модели», ― сказал заместитель директора ИЯФ СО РАН по научной работе доктор физико-математических наук И.Б. Логашенко.


Результаты измерений ученых ИЯФ СО РАН, получение которых вместе с постройкой коллайдера заняли 20 лет, значительно отличаются от тех, что раньше получали в мире. Разница между предсказанным Стандартной моделью значением АМММ и полученным в эксперименте сократилась примерно в четыре раза.


2000vepp_2srs (160x146, 22Kb)«Мы не понимаем, почему у нас получился результат, отличающийся от всех предыдущих. Мы уверены в нашем результате, было сделано огромное количество проверок. По моему убеждению, анализ данных, который мы провели, был наиболее тщательный среди всех, которые были сделаны раньше. Это не удивительно ― мы учились на опыте других в том числе. Но и прошлые измерения проводили очень серьезные научные группы. Предстоит еще понять, что отличает наши измерения от всех остальных», ― рассказал И.Б. Логашенко на пресс-конференции.


Ученый добавил, что сейчас очень важно, чтобы измерения российских ученых подтвердили в других институтах. Для верификации результата требуются независимые эксперименты. При этом даже подтверждение измерений ученых ИЯФ СО РАН будет означать не то, что «Новой физики» нет, а скорее то, что она должна проявляться при больших энергиях. «Закрывает ли наш результат возможность существования «Новой физики»? Конечно, нет. Вопрос ― в точности… Чем тяжелее частицы, которые мы еще не открыли, тем они дают меньший вклад в аномальный магнитный момент мюона. Поэтому наша разрешающая способность ― то, до каких энергий мы увидим вклад гипотетических частиц, ― зависит от точности измерений. С той точностью, которую мы измерили ― да, закрывает. Мы можем сказать, что не может быть частиц легче определенной массы. Но частицы с большой массой могут быть», ― сказал И.Б. Логашенко.


 


Теперь ученые ждут независимого подтверждения измерений. Кроме того, уточняющие данные ждут со второго детектора коллайдера ВЭПП-2000 - СНД. В течение следующих двух лет ученые планируют получить новые данные, чтобы подтвердить существующие. Еще лет пять-шесть займет модернизация детектора, после чего опять начнется очередной набор информации. Тогда ученые планируют увеличить точность измерений в два-три раза, но на это уйдет ориентировочно 10 лет.


Опубликовано на портале «Научная Россия» 18.04.2023 


Метки:   Комментарии (0)КомментироватьВ цитатник или сообщество
Rewiever

Погасла «Звезда Физтеха»

Среда, 22 Февраля 2023 г. 17:49 (ссылка)


Ушел из жизни академик РАН Семён Соломонович Герштейн


 


Московский физико-технический институт, Отделение физических наук Российской академии наук, Секция ядерной физики ОФН РАН, НИЦ «Курчатовский институт», Институт физики высоких энергий им. А. А. Логунова с глубоким прискорбием сообщают, что 21 февраля на 94-м году жизни скончался выдающийся физик с мировым именем, организатор науки и талантливый педагог академик РАН Семён Соломонович Герштейн.


ssg2023mfti1 (448x255, 74Kb)


 


Работы Семёна Соломоновича Герштейна оказали важное влияние на развитие атомной физики, физики элементарных частиц и астрофизики. Уже в первой научной работе совместно с Я. Б. Зельдовичем им был открыт фундаментальный закон сохранения в слабом векторном взаимодействии, аналогичный закону сохранения электрического заряда, и получено указание на аналогию слабых и электромагнитных взаимодействий. Этот результат имел важнейшее значение для создания современной теории микромира — Стандартной модели. Он явился также исходным пунктом такого плодотворного направления в теории, каким является алгебра токов.


Также совместно с Я. Б. Зельдовичем, используя космологические данные, Семёном Соломоновичем Герштейном был установлен верхний предел на массу мюонного нейтрино. Этот результат стимулировал произошедший в последнее время синтез физики частиц и космологии.


Еще до открытия нейтральных токов, в 1962 году, Семён Соломонович предложил для их наблюдения изучать возбуждение атомных ядер под действием нейтрино средних энергий. Наблюдение этого типа реакции — расщепления дейтрона под действием солнечных нейтрино — стало наиболее убедительным доказательством осцилляций солнечных нейтрино и справедливости Стандартной модели Солнца. Среди других результатов Семёна Соломоновича Герштейна в области космологии и астрофизики — предложение оригинального механизма коллективного ускорения солнечных космических лучей, идея о том, что наблюдаемые гамма-всплески связаны со специфическими вспышками массивных звезд, и получение ограничения на возможную массу гравитона из данных по анизотропии реликтового излучения (совместно с А. А. Логуновым и М. А. Мествиришвили).


 


Мировую известность получили работы Семёна Соломоновича Герштейна по теории мезомолекулярных процессов и мюонного катализа. Он предсказал существование сильного влияния переходов мезоатомов в нижнее состояние сверхтонкой структуры на вероятность мю-катализа (эффект Герштейна — Вольфенштейна), открыл явление резонансного образования мезомолекул дейтерия (совместно с В. П. Джелеповым и другими), предсказал, что в смеси дейтерия-трития один мюон может вызывать более 100 актов реакций ядерного синтеза, что побудило начать исследования этого эффекта во многих лабораториях мира.


В области физики частиц совместно со своими учениками Семён Соломонович получил ряд важных результатов для процессов с тяжелыми кварками: предложил механизмы рождения очарованных частиц в нейтринных и фотонных пучках, предсказал сечение рассеяния с-кварков на нуклонах и дал одну из первых интерпретаций ипсилон-мезонов, предсказал массу, время жизни и основные каналы распада Вс-мезонов, состоящих из b- и с-кварков.


В последние годы Семёном Соломоновичем Герштейном были рассмотрены разнообразные следствия полевой теории гравитации, развитой А. А. Логуновым и сотрудниками.


Благодаря его расчетам на ускорителе протонов впервые в мировой практике получен интенсивный пучок электронов с энергией до 46 ГэВ, недоступной для существовавших в то время электронных ускорителей, и проведены совместные эксперименты группы ФИАН — Ереванский физический институт — ИФВЭ по изучению взаимодействия фотонов высокой энергии с протонами.


 


Большое внимание Семён Соломонович уделял подготовке научных кадров. После окончания Московского государственного университета им. М. В. Ломоносова он начал свою трудовую деятельность учителем физики в сельской школе и одновременно сдавал экзамены по теоретическому минимуму Л. Д. Ландау. Четверо учеников С. С. Герштейна из этой школы защитили докторские диссертации, а более 10, окончив филиал МИФИ, стали сотрудниками Физико-энергетического институте в Обнинске. На протяжении многих лет Семен Соломонович преподавал физику в вузах нашей страны: в 1958–1959 гг. — в Ленинградском политехническом институте, в 1961–1962 гг. — в филиале Физического факультета МГУ в Дубне, а с 1963 г. без перерывов читал курсы теоретической физики в МФТИ, где был заслуженным профессором. В результате тайного голосования студентов МФТИ Семён Соломонович Герштейн был награжден почетным знаком «Звезда Физтеха». В числе бывших его студентов множество крупных ученых. Семён Соломонович неизменно активно поддерживал молодых, способных научных сотрудников и вообще талантливых людей.


 


Немало усилий он уделял популяризации науки. Будучи членом редколлегии энциклопедии «Физика микромира» и редактором-консультантом БСЭ, написал для этих изданий более десятка статей. Семён Соломонович Герштейн был членом редколлегий журналов «Природа», «Ядерная физика» и ТМФ.


В знак признания заслуг и достижений Семён Соломонович был награжден орденом «За заслуги перед Отечеством» IV степени, орденом Почета, Почетной грамотой Президента РФ, Золотой медалью РАН имени Л. Д. Ландау, международными премиями ОИЯИ имени Б. М. Понтекорво и ИТЭФ имени И. Я. Померанчука.


Семёна Соломоновича отличали высокая научная принципиальность, преданность науке, прирожденная интеллигентность, внимательное и доброжелательное отношение к людям. Его кончина — невосполнимая утрата для российской и мировой науки.


Выражаем глубокие и искренние соболезнования родным и близким Семёна Соломоновича. Светлый образ этого замечательного ученого и человека навсегда останется в памяти друзей и коллег и сохранится в истории науки.


 


Опубликовано: журнал МФТИ «За науку», Пресс-служба МФТИ - 21.02.2023
Метки:   Комментарии (0)КомментироватьВ цитатник или сообщество
Rewiever

В.А. Петров напомнил о теории А.А. Логунова

Среда, 17 Марта 2021 г. 23:47 (ссылка)


Вечная жизнь электрона и поиски суперсимметрии:


чем интересен микромир? /Редакционное название/


 


petrov_interv2 (198x139, 32Kb)    Наш мир, как матрешка: он состоит из молекул, молекулы — из атомов, атомы — из электронов и   ядер, внутри ядра атома — протоны и нейтроны, а внутри них — кварки и глюоны. Все это   многообразие описывается Стандартной моделью фундаментальных взаимодействий.



  Самые интересные вопросы микромира — такие как невылетание кварков, продолжительность   жизни частиц, поиски суперсимметрии и гипотетических частиц, — мы обсудили (см.) с Владимиром   ПЕТРОВЫМ из НИЦ «Курчатовский институт» — ИФВЭ (Институт физики высоких энергий им. А.А.   Логунова)  в Протвино.


 /Автор интервью Янина Хужина — с Владимиром Петровым. Фото: Николай Малахин, «Научная Россия»/.


  Справка. Владимир Алексеевич Петров — доктор физико-математических наук, профессор, заслуженный деятель науки РФ, один из наиболее цитируемых российских ученых по версии Scopus, руководитель Отдела теоретической физики в НИЦ «Курчатовский институт» — ИФВЭ.



— В 2012 году на Большом адронном коллайдере был триумфально открыт бозон Хиггса. Группа НИЦ «Курчатовский институт» — ИФВЭ тоже участвовала в этих исследованиях. В чем заключался вклад вашей команды?


— Бозон Хиггса был заявлен двумя из четырех крупных экспериментов в ЦЕРНе. Это эксперименты АТЛАС и КМС. В обоих экспериментах участвовали группы ученых из нашего Института в Протвино. Они являются соавторами открытия бозона Хиггса. Сегодня я не буду останавливаться подробно на вкладе каждого из них, скажу только, что усилия всех специалистов были огромными: это и создание уникального оборудования, и поставка для ЦЕРНа некоторых материалов,  которые не всегда можно получить с оптимальным соотношением цены и качества в Европе, а в России они есть; а также дежурство на сеансах и сложная обработка результатов с помощью компьютеров высочайшего уровня и, конечно, соответствующая теоретическая работа — cловом, практически во всех областях проекта наши специалисты принимали активное участие.


 


— Поле Хиггса придает массу частицам?


— Грубо говоря, да. Это значит, что если бы этого поля не было, то мы бы с вами, очень условно говоря, могли бы быть очень лёгкими, «летали по воздуху». Не было бы массы у элементарных частиц, у кварков, например. То есть это некое поле, которое как бы разлито по всей Вселенной, и через него протискиваются частицы и тем самым в каком-то смысле приобретают свою массу, инерцию. Но это относится не ко всем частицам. Например, фотон пока что этой участи избежал и остается без массы.


 


— Бозон Хиггса — это как бы мельчайшая часть, квант этого поля?


petrov_stmod1 (446x336, 186Kb)— На этот счет есть как минимум несколько версий. Одна из простейших заключается в том, что бозон Хиггса — есть один квант этого поля, один тип. Такая гипотеза пока что находится в согласии со всеми экспериментами. Однако те данные о свойствах этого бозона, которыми мы располагаем, не исключают и других возможностей: например, наличия других типов бозонов такого рода, а также того, что, возможно, этот бозон не является элементарной частицей, а составлен из каких-то других более элементарных. Такая возможность вполне всерьез рассматривается, и в этом смысле вопросов еще достаточно много.


Стандартная модель фундаментальных взаимодействий (см.) — это модель квантовой теории калибровочных полей, описывающая кварки и лептоны и три фундаментальных взаимодействия: слабое, сильное, электромагнитное.


/Схема всего сущего - "Стандартная модель" - из презентации В.А.  Петрова/


— Можно ли сказать, что бозон Хиггса в каком-то смысле завершает Стандартную модель, которая описывает весь наш сегодняшний мир?


— Что касается бозона Хиггса, то, да. В той части, которая называется электрослабой частью Стандартной модели (описывает слабое и электромагнитное взаимодействие), а также в рамках сильного взаимодействия, бозон Хиггса стал действительно завершающим элементом. В этом смысле его обнаружение играло центральную роль, поскольку, как мы уже говорили, поле Хиггса дает массы кваркам и другим частицам. Но, если смотреть шире, то для завершения Стандартной модели нам не хватает кванта гравитации — гипотетической частицы под названием гравитон. 


Несколько лет назад были открыты гравитационные волны, и в этом эксперименте, кстати, российские ученые тоже участвовали.  Но пока что говорить определенно о том, что эти волны проквантованы, мы не можем, какие у них свойства — мы тоже пока не знаем. Этап открытия гравитационных волн я бы мог назвать предпоследним, если включать в Стандартную модель гравитацию, а последним должен стать гравитон.


 


— Мы с вами сейчас говорим о гравитации как о взаимодействии, а может ли гравитация быть материей, например? 


— Гравитация, собственно говоря, всегда рассматривалась как поле. Это сложно объяснить, но гравитацию сейчас большинство физиков общей теории относительности рассматривают по-другому: это даже и не поле, а геометрия — то есть некие функции, которые описывают метрические свойства пространства-времени. И в этом смысле гравитация стоит особняком по отношению ко всей остальной материи.


Создателем и первым директором нашего Института физики высоких энергий был А.А. Логунов. Поскольку по роду деятельности он был теоретиком, то в своё время выдвинул и развил собственную, новую теорию гравитации (РТГ - релятивистскую теорию гравитации), где гравитация была обычным физическим полем и, соответственно, стала альтернативой общей теории относительности. 


 


— Правильно ли я понимаю, что в современной картине мира вся Вселенная состоит из неких полей. Причем какие-то из них являются фундаментальными, а какие-то нет. А сколько всего этих полей существует? 


— Дело в том, что основой современной физики элементарных частиц является квантовая теория поля, а в ней разделение на поля и частицы довольно условно. Например: мы привыкли считать, что электромагнитное взаимодействие осуществляется путем обмена фотонами — это то, что является силой. Но, с другой стороны, и сами фотоны могут друг с другом взаимодействовать путем обмена электронами и позитронами (позитрон — античастица электрона), и здесь уже электроны и позитроны выступают в качестве полей, переносчиков взаимодействия. Поэтому разделение на частицы и поля довольно условное на самом деле, но оно нисколько не противоречит математическому аппарату квантовой теории поля — там все находится в полной гармонии. Причем в некоторых условиях какие-то свойства частиц могут проявляться корпускулярно: частица может вести себя как точечный объект, а может проявлять свойства волны. Это, впрочем, уже давно известно из квантовой механики.


В сферу главных научных интересов Владимира Петрова входят квантовая хромодинамика, процессы с участием тяжелых кварков, эффекты квантовой гравитации, дифракционные процессы. Работа ученого тесно связана с экспериментами в SLAC (США), HERA (Германия), а в последнее время преимущественно с экспериментами на Большом адронном коллайдере CERN (Швейцария).


 


— Поговорим об Институте физики высоких энергий. В советские годы здесь был запущен легендарный «Серпуховский синхротрон». Расскажите об этом проекте подробнее..


u70_halls (391x277, 137Kb)   — В 1967-м году наш Институт запустил ускоритель протонов У-70. На   тот момент это был крупнейший ускоритель в мире. Энергия протонного   синхротрона составляла 70 ГэВ (1 ГэВ = 109 электронвольт). Это был   юбилейный год, пятидесятилетие революции. Я не скажу, что   строительство ускорителя подгоняли специально под эту дату, но   открытие его на тот момент пришлось очень кстати. 


   Представьте себе 70 миллиардов электронвольт – это значит, что   электрон пролетает зазор с напряжением 70 миллиардов вольт.   Поверьте, это чудовищное напряжение, это огромная энергия! И тогда   это был лидирующий в мире по энергии ускоритель. В течение   последующих пяти лет он оставался таковым, и за это время мы успели   сделать здесь несколько интересных открытий, таких как, например,   возрастание полных сечений и радиуса сильных взаимодействий с   ростом энергии столкновений или эффект масштабной инвариантности   в процессах множественной генерации адронов.  Я думаю, что У-70   сыграл важную роль и внес довольно существенный вклад в мировую   физику частиц.


  /В ускорительном комплексе У-70, фото из архива ИФВЭ/


  — А сейчас он по-прежнему работает?


  — Да, он работает. На нем ведется ряд  экспериментов по разным направлениям, таким как, например,  поиск редких распадов К-мезонов или исследование механизмов сильного взаимодействия в столкновениях протонов с атомными ядрами.  Но, к сожалению, сейчас его работа по разным причинам сильно затруднена. Если в прошлые годы, не говоря уже о советском времени,  на У-70 проводилось несколько сеансов в год, то есть он в это время был «включен» и на нем можно было работать, «набирать статистику», то сейчас это — один раз в год или даже реже. Накапливать необходимую статистику, позволяющую осуществлять надежный физический анализ данных,  в таких условиях очень трудно.


 


— Изначально ускоритель создавался для поиска кварков — неделимых составляющих протонов и нейтронов?


— Да. Кварки были введены в обиход где-то в 1964-м году, в течение последующих нескольких лет они были у всех на слуху, и ученые задавались вопросом: а где эти кварки, как их искать, что они из себя представляют? Поэтому одним из первых экспериментов на нашем ускорителе У-70 как раз и стал поиск частиц с дробным электрическим зарядом — у кварков имеется дробный электрический заряд, кратный 1/3 от заряда электрона. Результат поисков был отрицательным. То есть даже при тех высоких энергиях, которые у нас были, кварки не удалось увидеть. И это стало первым шагом к пониманию феномена, который сегодня называется «невылетанием кварков». Сейчас уже известно, что при существующих в мире энергиях кварки увидеть невозможно, об их существовании мы можем говорить лишь по косвенным признакам. Кварк в эксперименте можно наблюдать как некий шлейф, некий «хвост» из обычных частиц, который тянется за кварками, но конкретно сами кварки мы не видим.


/Слово «кварк» было заимствовано из романа Джеймса Джойса «Поминки по Финнегану». Слова «три кварка для мистера Марка!» в романе выкрикивали чайки. Кварк в немецком языке — это творог, в английском — имитация крика чаек, чепуха. Американский физик-теоретик Мюррей Гелл-Ман предложил использовать слово кварк для обозначения новых элементарных частиц - из презентации В.Петрова/.


Все последующие мировые эксперименты на более мощных ускорителях тоже давали неизменно отрицательные результаты, и в итоге вызрела гипотеза, что кварки вообще невозможно выделить в чистом виде, сфотографировать, грубо говоря. Тривиальный пример, который часто приводится, это пример с полюсами магнитов: если существующие частицы — протоны, пи-мезоны и т.д. — уподобить магниту, а составляющие их — полюсам магнитов, то получается, что вы не можете один полюс отрезать. Вы порежете магнит, а у вас опять появятся два полюса — и так до бесконечности.


 


— То есть они между собой неразрывно связаны?


— Да. И в этом смысле возникала как раз проблема, которая сейчас сформулирована как одна из выдающихся загадок Стандартной модели — это теория, или проблема невылетания кварков; или quark confinement (пленение кварков), если брать аналогию из английского языка.


На нашем ускорителе У-70 в экспериментальном плане был совершен первый шаг к становлению этой гипотезы, которая сейчас является важнейшей проблемой.


 


— Эта связь кварков обеспечивается неким «склеивающим»,  глюонным полем? Прим.: от английского glue (клей).


— Да, согласно современной физической теории, кварки связаны между собой этим глюонным полем. Но свойства этих полей на больших расстояниях несколько необычны: скажем, если электромагнитное поле на больших расстояниях падает, когда вы разводите электрические заряды, то здесь, напротив, сила возрастает: чем больше вы разводите частицы, тем выше сила «натяжения», поэтому кваркам вылететь нельзя. Глюонная «струна», связывающая кварки, может только где-то порваться, родить пару кварк-антикварк, но, опять же, у вас тогда появится не два отдельных кварка, а две пары кварк-антикварк.


 


petrov_1desk2 (296x235, 61Kb)— Глюонная связь — основная причина невылетания кварков или это лишь средство?


— Трудно сказать. На вопрос о невылетании кварков, как я уже упоминал, пока не найдено однозначного ответа. 


Если говорить о полях, то есть опять возвращаться к теоретической науке, то проблема невылетания кварков — это чисто теоретическая проблема. Экспериментаторы вам говорят, что кварков в свободном виде нет — и точка. Однако строение протонов, пи-мезонов, их масса, свойства — словом, все сообщает о том, что внутри ядра, внутри протонов и нейтронов они есть. И тогда возникает проблема: а почему их нельзя вырвать? И вот эта проблема сейчас уже четко сформулирована и входит в число задач, которые до сих пор никто не может решить. Это интереснейший вызов для теоретика. Подходов много. Люди работают над этим интенсивно, проходят научные конференции, семинары и т.д. В нашем Институте в Протвино в конце года тоже планируется провести онлайн-конференцию на эту тему. 


 


— Считается, что время жизни электрона бесконечно. В какой форме электрон продолжают свою вечную жизнь, скажем, после смерти человека?


—  Ну, электроны все равно в наших атомах так и остаются, неважно живы мы или умерли. Атомы ведь никуда не деваются... просто происходит распад. Химические вещества, составлявшие основу нашего тела, распадаются на молекулы, на более простые элементы, – попадают в землю и возвращаются обратно. Поэтому электроны никуда не пропадают.


К нашей с вами биологической жизни жизнь электрона, к счастью или к сожалению, отношения особо не имеет. В этом смысле электроны так и продолжают жить дальше; считается, что бесконечно, так как мы пока не видели их распадов, а значит, время их жизни превышает космологическое время — известный нам возраст Вселенной (около 14 млрд. лет), поэтому электроны и принято считать вечными. Что касается других элементарных частиц, а их сотни, то почти все они распадаются, причем многие из них распадаются довольно быстро. А вот электрон, фотон, протон, электронное нейтрино, похоже, и правда живут вечно — по крайней мере пока что их распада никто не видел.


 


— За рамками Стандартной модели существуют гипотетические частицы, такие как тахион (якобы превышающий скорость света), гравитон (квант гравитации), магнитный монополь (имеющий один полюс) и многие другие. Какие из гипотетических частиц ученые больше всего хотят найти?


— Если начать с тахионов, то это наименее востребованная в плане поиска элементарная частица. Конечно, есть энтузиасты, которые занимаются поисками тахиона, и в этом смысле здесь даже могут быть вполне согласованные теории, но как это все воплотить в жизнь, как и где их искать — непонятно. Так что пока поиск тахионов находится вне рамок экспериментальных исследований.


Есть много экспериментов по поиску такой гипотетической частицы, как аксион, который, грубо говоря, является реакцией Природы на нарушение некоторой симметрии. Некоторые считают, что именно из аксионов может состоять темная материя. Но это тоже вызывает много вопросов. Сейчас ощущение такое, что часто ищут «сами не знают что», поскольку мы до сих так и не выяснили, из чего состоит эта темная материя, как она взаимодействует — помимо того, что «не светится», и т.д. Поэтому все, что пока можно сделать, это взять для описания темной материи какие-то доступные нашему пониманию модели: скажем, тот же аксион или, например, так называемый темный фотон — короткоживущая тяжелая частица, которая может распадаться на другие частицы.


Но добрая половина экспериментов, которые сейчас проводятся на коллайдере в ЦЕРН, зациклена на поиске частиц, обладающих суперсимметрией, или иной экзотики. Однако за более чем десятилетнюю историю БАКа все эти эксперименты заканчивались словами о том, что в данной области энергии таких частиц не обнаружено.


 


— Можете рассказать подробнее о суперсимметрии?


— Ученые очень сильно хотят найти её. Дело в том, что до введения в строй Большого адронного коллайдера (БАК) в теоретическом сообществе было полное убеждение, что когда БАК заработает, сразу же будут найдены частицы, обладающие суперсимметрией, а также суперструны, и посыплется на нас как из рога изобилия вся эта красивая физическая теория — но не тут-то было! То, что суперсимметрия не была найдена, стало шоком для многих теоретиков, и в состоянии замешательства они пребывали последующие несколько лет. «Не может быть, чтобы Природа не обладала таким красивым свойством, как суперсимметрия!», — говорили они… а оказалось, что на ускорителях мы этого не видим.


СУПЕРСИММЕТРИЯ —  это симметрия между частицами материи (фермионами, коими являются кварки и лептоны) и частицами-переносчиками сил (то есть бозонами: глюоны, фотоны и др.).


Согласно этой модели, у каждой элементарной частицы есть свой суперпартнер, то есть элементарные частицы материи и переносчики взаимодействий (сильного, слабого, электромагнитного) могут взаимно превращаться друг в друга. Но мы не наблюдаем этого в природе, поэтому, возможно, в какой-то момент существования Вселенной суперсимметрия была нарушена. Открытие суперсимметрии в эксперименте означало бы открытие новой физики за пределами Стандартной модели.


 


— Есть гипотеза, что наша Вселенная была суперсимметричной на ранних стадиях своего существования?.


petrov_aalog1 (280x235, 68Kb)— Да, есть такое предположение, но я бы не сказал, что оно разделяется большинством ученых. Сторонники гипотезы считают, что в начале рождения Вселенной симметрия могла быть максимальной, но потом она постепенно начала нарушаться и пришла в то состояние, которое мы имеем сейчас. То есть получается, что в каком-то смысле мы были очень идеальные в начале (хотя физически нас с вами там не было), но потом что-то пошло «не так».


Сейчас концепция ранней суперсимметрии приняла несколько иной вид. Большой взрыв, как космологическая гипотеза, больше не является доминирующей точкой зрения. Есть другие идеи, и они предполагают, например, непрерывное пульсирование Вселенной: сжатие-растяжение; то есть в такой концепции не было никакого великого начала в виде Большого взрыва.


/так в теории РТГ, которую  развивал академик А. Логунов (1926-2015), фото - «Научная Россия»/ 


 


— Могут ли в природе рождаться элементарные новые частицы? Или те, что возникли после условного Большого взрыва, так  и остались, причем с теми же свойствами?


— А это очень интересный вопрос! В общем-то, считается, что не могут. Аргументируется это тем, что мы нашли некую фундаментальную теорию (Стандартная модель), вечную — по смыслу вашего вопроса, которая лежит в основе всего, и с неё-то, собственно, Большой взрыв и начинался. Это очень интересная мысль — появление новых видов частиц со временем — это ваша гипотеза. Но пока что все остается так, как было, а новые частицы рождаются только в чисто механическом смысле, когда у вас энергия переходит в массу.


 


— Владимир Алексеевич, какие научные вопросы, кроме упомянутых нами сегодня, вас интересуют больше всего?


— Сейчас я много работаю над многомерными теориями, когда мы предполагаем, что наше пространство не трехмерное, а, скажем, пятимерное. Меня интересуют, в частности, физические следствия, которые мы можем из этого получить. Такая тенденция в целом не нова: в 1980-х годах был настоящий бум, связанный с поиском дополнительных измерений пространства-времени. Сейчас все успокоилось, «мода» не стоит на месте, но в этой области исследований по-прежнему остается много интересных возможностей.


 


— Получается, в физике тоже есть своя мода? Мода на идеи?


— Еще бы! Вспомнить хотя бы 1980-е, 90-е годы. Тогда только теория струн всех интересовала, а вся остальная физика считалась чуть ли не чепухой. По этому поводу развился бешеный математический аппарат, однако какого-то более-менее адекватного приближения теории струн к физической реальности мы так и не увидели. С одной стороны, каждая новая мода на физические идеи иногда полезна, потому что она возбуждает энтузиазм, будит какие-то творческие порывы. Хотя  с другой стороны, может оказаться и вредной. Я себя отношу скорее к консерваторам и к энтузиастам «старой» Стандартной модели, ведь там до сих пор остается множество нерешенных вопросов.


 


Беседовала Янина Хужина.


Опубликовано: «Научная Россия», 15 марта 2021, там же видеоролик


/При републикации здесь изменены визуальная подача текста  и порядок иллюстрирования (с некоторым добавлением)

Метки:   Комментарии (0)КомментироватьВ цитатник или сообщество
Rewiever

«Последние кирпичики» в Стандартную модель

Суббота, 27 Апреля 2024 г. 21:45 (ссылка)


Успех поставленного в США уникального эксперимента


обеспечили российские физики 



Републикуется в память о  плодотворном научном сотрудничестве физиков  России и США


 


Поводом для проведения импровизированного семинара, который состоялся в ГНЦ "Институт физики высоких энергий" (Протвино Московской области), стала новость, пришедшая за неделю до этого из США. В обсуждении неординарного научного события приняли участие главный научный сотрудник ИФВЭ академик С. Герштейн, два других представителя теоретической физики - доктора наук А. Лиходед и В. Киселев, а также физики-экспериментаторы - начальник Отдела нейтринной физики член-корреспондент РАН С. Денисов и кандидат физико-математических наук  Д. Стоянова.  


 В беседе пригласили участвовать и автора этих строк.


 


  В чем же причина необычного для размеренной институтской жизни экспресс-мероприятия?


Дело в том, что в городке Батавия близ Чикаго (это как "Протвино близ Москвы") в ходе научного семинара ФНАЛ (Фермиевской национальной лаборатории) были доложены результаты крупного эксперимента, поставленного здесь на самом большом в мире ускорителе заряженных частиц - так называемом "тэватроне".


Результаты, во-первых, вызвали большой интерес и сейчас активно обсуждаются специалистами, а во-вторых, получены они были с активным участием российских физиков - как из ИФВЭ, так и из некоторых   других научных центров нашей страны. Но об этом втором моменте  (264x200, 19Kb)на   семинаре в Батавии не говорили, поскольку в этой нынешней   "физической Мекке" считается само собой разумеющимся, что в   крупных экспериментах задействованы многие сотни ученых из   десятков стран, так что выделять чей-то отдельный вклад не принято -   все делают одно общее дело. Но для наших физиков с учетом   периферического (в смысле финансирования) положения, которое занимает   сейчас отечественная наука, этот момент весьма чувствителен. Так что   рассказ не только о сути дела, но и о вкладе российских ученых будет,   видимо, вполне уместным. 


  На снимке - штаб-квартира ФНАЛ в Батавии


   Поскольку предмет повествования   довольно специфичен, не обойтись без некоторого предисловия,   вводящего читателя в курс дела.


   Современная физическая картина мира с наибольшей глубиной и достоверностью описывается сейчас так называемой "Стандартной Моделью" - СМ. Согласно ей, всё многообразие природы построено из фиксированного набора фундаментальных частиц: 6 лептонов и их античастиц (6 антилептонов), 6 кварков и соответствующих антикварков, глюонов, фотонов, заряженных W-бозонов, нейтральных Z-бозонов и частиц Хиггса. Окружающее нас вещество состоит из электронов, относящихся к лептонам, и двух видов кварков (обозначаемых индексами "u" и "d" - "верхний" и "нижний"). Из этих кварков составлены протоны и нейтроны, а из них - ядра всех элементов хорошо известной всем Периодической системы Менделеева. stmo_befohi (263x263, 26Kb)Весьма многочисленен класс ядерно-активных мезонов - это так называемые "связанные состояния", составленные из кварка и антикварка, но время их жизни ничтожно мало - не более миллиардных долей секунды.



Фотоны в СМ обеспечивают электромагнитное взаимодействие между заряженными частицами. W- и Z- бозоны ответственны за так называемое "слабое" взаимодействие, приводящее к распадным явлениям. А "сильное" (или ядерное) взаимодействие между кварками осуществляется путем обмена глюонами.


Вот такая панорама.                                                       (одна из схем СМ того времени)


Остается заметить, что к этому времени экспериментально подтверждено существование всех перечисленных фундаментальных частиц, кроме тех, которые были введены английским теоретиком П. Хиггсом для объяснения образования массы всех иных частиц, а потому и называются "бозонами Хиггса". Найти хиггсовы частицы - одна из важнейших задач для современной физики.


  Хотя все полученные до настоящего времени экспериментальные данные не противоречат предсказаниям СМ, большинство ученых не считает её "истиной в последней инстанции". Она рассматривается в качестве "низкоэнергетического приближения" к более общей теории, которая, возможно, будет иметь меньшее число фундаментальных частиц и объединит все виды взаимодействий, включая стоящее за рамками СМ гравитационное взаимодействие. Поэтому изучение новых явлений, подтверждающих или, напротив, опровергающих СМ, - другая первоочередная задача физики, прежде всего в исследованиях на современных ускорителях. В том числе и на тэватроне , в котором осуществляются столкновения встречных пучков протонов и антипротонов при энергиях порядка триллиона электрон-вольт (или 1 Тэв, откуда и "тэватрон").



   Здесь в одном из экспериментов под названием "DZero" ("Д-ноль", или "Д0" в русской аббревиатуре) физики взялись за изучение так называемых осцилляций нейтральных Вs-мезонов. Это процесс, в ходе которого происходит самопроизвольный переход Вs-мезона, представляющего собой связанное состояние s-кварка и b-антикварка, в анти-Вs-мезон, составленный из s-антикварка и b-кварка, и затем - наоборот. То есть осцилляции представляют собой череду взаимопревращений материи в антиматерию. Согласно представлениям Стандартной модели, такие переходы возможны только за счет слабого взаимодействия между кварками путем обмена W-бозонами.



D0_detectr1 (235x235, 80Kb)    Вообще говоря, осцилляции нейтральных мезонов не являются новым,   неизвестным явлением. Впервые они были исследованы для К-мезонов,   около двадцати лет назад - для Вd-мезонов, состоящих из d-кварков и b-   антикварков, а позднее - и для нейтрино. Но все попытки обнаружить   осцилляции для Вs-мезонов оказались безуспешными.  Основная   трудность здесь состояла в том, что частота этих осцилляций,   предсказываемая на основе косвенных данных по Стандартной модели,   должна превышать 15 триллионов переходов в секунду, что в десятки раз   больше, чем для Вd-мезонов. При этом нужно иметь в виду, что время   жизни самих Вs-мезонов - триллионные доли секунды.


  (Вид на передню панель детектора D0)


  Задача казалась   настолько сложной для экспериментального осуществления, что решать   её  предполагалось в программе исследований на ускорителе следующего   (после Тэватрона) поколения - большом адронном коллайдере LHC, сооружаемом сейчас Европейской организацией по ядерным исследованиям (ЦЕРН) в Женеве. Но вот довольно неожиданно физикам, работающим на "тэватроне", удалось решить эту задачу на два-три года раньше, чем заработает LHC. Как это было и что делать дальше - об этом и шёл разговор.


  В первую очередь участники беседы отметили огромный объем работы, проделанной физиками для достижения результата. Достаточно сказать, что за время эксперимента в установке произошло около 100 триллионов протон-антипротонных столкновений, из которых было отобрано всего несколько тысяч событий, важных с точки зрения осцилляции Bs-мезонов. Кропотливый анализ с применением оригинальной методики обработки данных позволил установить, что частота осцилляции с большой вероятностью заключена в диапазоне от 17 до 21 триллиона переходов в секунду. Тем самым получено новое важное подтверждение справедливости СМ.



Согласно первым сообщениям, сами участники эксперимента D0 довольно скромно рассматривают свой результат как первую ласточку , надеясь в ближайшее время значительно улучшить точность измерений. Дело в том, что продолжение опыта представляет исключительный интерес не только с точки зрения проверки СМ и уточнения ее параметров, но, возможно, и для разрешения загадки асимметрии (неравного присутствия) вещества и антивещества во Вселенной. Имеются также заметные шансы на открытие "последнего кирпичика СМ" - частицы Хиггса, что явилось бы настоящим триумфом этой теоретической модели. Так что уже в близком будущем можно ожидать новых интересных сообщений из ФНАЛ.



Чьими усилиями (с российской стороны) "куётся" эта едва ли не фантастическая физика?


Об этом рассказал непосредственный участник событий, руководитель группы российских физиков, задействованных в эксперименте, член-корреспондент РАН Сергей Петрович Денисов:


- Надо сказать, что в этом эксперименте работает крупный интернациональный коллектив физиков из 20 стран мира. Самое большое представительство (не считая, естественно, "хозяев поля" из США) у России - несколько десятков человек. Это не только специалисты из ИФВЭ, здесь также представители дубненского ОИЯИ, московских ИТЭФ и НИИЯФ МГУ, ПИЯФ из Гатчины (Санкт-Петербург). Ими внесен значительный вклад в создание детекторов частиц, которые оказались особенно важными для регистрации осцилляции. Надо иметь в(241x248, 34Kb) виду, что для этих детекторов помимо их изготовления в России и доставки в США необходимо было также разработать соответствующие программные средства, а затем обеспечить их высокоэффективную работу в эксперименте. Кроме того, была предложена и реализована оригинальная схема обработки и анализа данных, основанная на определении так называемой "функции правдоподобия событий", которая и позволила измерить частоту осцилляции. Так что без всякого преувеличения можно сказать, что именно российские физики (в том числе и работающие ныне за рубежом) в значительной степени определили успех эксперимента.


На снимке: Сергей Петрович Денисов 


И, конечно же, нельзя не отметить то, что достижение результата было бы невозможным без эффективной работы всего ускорительного комплекса тэватрона, этой уникальной пока машины для исследований физики частиц.                                   



    Вот на этом месте участники беседы не могли не посетовать по поводу того, что здесь у нас, в Протвино, так и остался незавершенным грандиозный физический проект по сооружению УНК - ускорительно-накопительного комплекса протонов. Как известно, проект начал осуществляться в середине 1980-х годов, но результатом вложения около миллиарда полновесных советских рублей стал лишь гигантский подземный кольцевой тоннель длиной 21 км. Нечто подобное близится сейчас к завершению в Женеве, а ведь, согласно планам, наши ученые могли бы приступить к подобным исследованиям еще в конце 1990-х! Но на создание ускорителя у переходящей на рыночные рельсы страны средств не нашлось.



Так что, вложенный буквально в землю миллиард так и останется невостребованным?



Академик С. Герштейн по этому поводу заметил, что протвинский тоннель - уникальное инженерно-техническое сооружение, он даже превосходит женевский, поскольку имеет сечение в полтора раза больше, а значит - и больше возможностей для реализации ускорительных проектов будущего.



Эту же мысль развил профессор А. Лиходед. Он заметил, что коллайдер LHC стоимостью в 7 миллиардов евро через пару лет уже будет работать, а это значит, что мировой центр физики высоких энергий переместится именно туда, в Западную Европу. И вновь российским физикам придется осуществлять свои замыслы на зарубежных установках. А ведь создание своего ускорителя в уже готовом тоннеле (кстати, его сооружение стоило бы сейчас раз в 10 дороже) могло бы стать для нашей страны, по-прежнему претендующей на статус мировой державы, вполне достойным национальным проектом. Вновь активно заработали бы отечественные научные школы и вновь потянулись бы к нам коллеги из зарубежных лабораторий...



Ну, а пока - работаем там, где для этого есть соответствующие возможности. И добываем результаты, становящиеся общим достоянием мировой науки, хоть их и считают результатом работы иных научных центров.


 


   Опубликованогазета научного сообщества"Поиск" №17, 28 апреля 2006 г., журнал «Наука и жизнь»-№6/2006,  местная пресса


 


Метки:   Комментарии (0)КомментироватьВ цитатник или сообщество

Следующие 30  »

<стандартная модель - Самое интересное в блогах

Страницы: [1] 2 3 ..
.. 10

LiveInternet.Ru Ссылки: на главную|почта|знакомства|одноклассники|фото|открытки|тесты|чат
О проекте: помощь|контакты|разместить рекламу|версия для pda