|
|
Рябь времени, или Когда физика лучше фантастики.Среда, 05 Ноября 2025 г. 13:53 (ссылка)
Там, где нарушается симметрия, может возникать движение.
Франк Вильчек, нобелевский лауреат 2004 года и автор концепции временно'го кристалла. Фото: Kenneth C. Zirkel/Wikimedia Commons/CC BY-SA 3.0. Темпоральные, или временны́е, кристаллы — новая идея в физике, широко обсуждаемая в последние годы. Они представляют собой физические системы, «сами по себе» повторяющиеся во времени. Несмотря на экзотичность концепции, исследователи уже прикидывают возможные области применения идеи и ищут наиболее удачные «рецепты» приготовления «кристаллического времени». Подробнее см.: https://www.nkj.ru/archive/articles/31480/ (Наука и жизнь, Рябь времени, или Когда физика лучше фантастики)темпоральные, или временны́е, кристаллы — новая идея в физике, широко обсуждаемая в последние годы. Они представляют собой физические системы, «сами по себе» повторяющиеся во времени. Несмотря на экзотичность концепции, исследователи уже прикидывают возможные области применения идеи и ищут наиболее удачные «рецепты» приготовления «кристаллического времени». Красота законов природы идёт рука об руку с симметрией. Строго говоря, симметрия в физике подразумевает то, что некоторое свойство остаётся неизменным при определённой трансформации: это может быть поворот или сдвиг в пространстве, зеркальное отражение. Проще говоря, как ни крути объект или Вселенную, законы физики не меняются. Симметрия может быть непрерывной и дискретной. Например, однородный шар можно поворачивать на любой угол — ничего не изменится. А вот куб «повторяет себя» только при повороте на определённый угол. Это примеры непрерывной и дискретной вращательной симметрииИнтересная физика начинается там, где изменяется, а точнее, ломается симметрия. Скажем, кристалл менее симметричен, чем однородная жидкость, состоящая из тех же самых атомов, так что его можно рассматривать как нарушение пространственной симметрии. Атомы в нём находятся в узлах так называемой кристаллической решётки с чётко определёнными расстояниями и углами. Чтобы при движении в пространстве получить тот же самый кристалл, его нужно сдвинуть на чётко определённое расстояние (так называемую постоянную решётки — размер элементарной ячейки, повторением которой можно воспроизвести весь кристалл) или повернуть на соответствующий угол. Конкретные характеристики кристаллов напрямую зависят от того, как именно была нарушена симметрия: количество электронов на внешней оболочке атомов, магнитные моменты, температура — всё это влияет на взаимодействия между атомами и в конечном счёте определяет свойства материала. Физики давно изучают кристаллы и даже научились создавать похожие системы с помощью лазеров или микроволн, где роль узлов решётки могут играть не только атомы и электроны, но и фотоны или квазичастицы, например фононы. Симметрию среды нарушают также намагниченность и протекание электрического тока.
|
|
|
LiveInternet.Ru |
Ссылки: на главную|почта|знакомства|одноклассники|фото|открытки|тесты|чат О проекте: помощь|контакты|разместить рекламу|версия для pda |