Метод Уэлфорда и одномерная линейная регрессия |
Одномерная линейная регрессия — один из самых простых регрессионных методов (и вообще один из самых простых методов машинного обучения), который позволяет описывать линейную зависимость наблюдаемой величины от одного из признаков. В общем случае в задачах машинного обучения приходится сталкиваться с большим количеством различных признаков; одномерная линейная регрессия в таком случае выбирает тот из них, который позволяет добиться наилучшей корреляции с целевой функцией.
В предыдущем посте из этой серии мы обсудили точность вычислений средних и ковариаций, а также познакомились с методом Уэлфорда, который во многих случаях позволяет избежать вычислительных погрешностей в этих задачах. Сегодня мы рассмотрим практическое применение метода Уэлфорда в задаче одномерной линейной регрессии.
Комментировать | « Пред. запись — К дневнику — След. запись » | Страницы: [1] [Новые] |