Заинтересовала меня тут одна задача. Спрашиваю здесь, потому что уверен, что математики уже там давно уже все углы обгадили, решение должно уже быть, и мне дадут сразу правильные ссылки.
Из электростатики мы знаем об уравнении Пуассона, связывающем потенциал электрического поля и плотность заряда. Зная распределение объёмного заряда и потенциал на границе области, можно восстановить потенциал (и поле) во всём пространстве.
Меня интересует обратная задача: восстановить плотность заряда, зная потенциал на границе области (считаем, что снаружи области зарядов нет). Очевидно, задача не имеет однозначного решения. Одно из решений заключается в том, чтобы дважды решить уравнение Лапласа (внутри и снаружи области), а затем по излому производной потенциала на границе найти поверхностное распределение заряда. То есть, весь заряд в таком решении распределен по границе.
Но хочется другое решение. Хочется решение, в котором заряд максимально сконцентрирован. То есть, если потенциал представим как конечная сумма точечных зарядов, то чтобы именно это распределение и было результатом.
Я попробовал решать вариационную задачу, максимизируя потенциальную энергию зарядов (сконцентрированный заряд запасает больше энергии, и сильнее "хлопнет", если "взорвётся" на куски). То ли я плохо помню вариационное исчисление, то ли где-то ошибся, но результатом варьирования оказалось именно поверхностное распределение заряда (возможно, что в нём, наоборот, получается минимум энергии).
Можно свести всё к мультипольному разложению, тогда результатом будет сингулярная каша в начале координат, но это тоже не то, что мне нужно, да и я сомневаюсь, что удовлетворит условию минимальности.
Как же подступиться к задаче?
https://ru-math.livejournal.com/842390.html