-Рубрики

 -Видео

 -Поиск по дневнику

Поиск сообщений в tutorstate

 -Подписка по e-mail

 

 -Статистика

Статистика LiveInternet.ru: показано количество хитов и посетителей
Создан: 19.09.2010
Записей:
Комментариев:
Написано: 4331


Statistics Tutor

Понедельник, 03 Сентября 2012 г. 21:15 + в цитатник

 

Statistics Tutor
Phone: 718-223-0228
Email: admin@TutorState.com
Skype: Skype Me™!
Statistics Tutor
Statistics Worksheets
Statistics Formulas
AP Statistics Exam
Hunter College Statistics Courses
Statistics
Tutor
Locations:
New York City
Mequon
Tutoring Service in Signals Systems and Transforms
Environmental Health Center
Tutoring Service in Math, Physics, Computer Science: TutorState.com
Chemistry tutor
Тютор по Химии для школьников и студентов в Нью-Йорке
В настоящее время юристы актера рассматривают возможность утверждения семьи в качестве обладателей прав на музыку, однако если к мирному соглашению с Apple прийти на удастся, Брюс Уиллис может подать на корпорацию в суд.
Крупнейший российский поисковик озаботился грамотностью своих пользователей. Специально ко дню знаний он запустил небольшой сервис под названием "Работа над ошибками". Программа в случайном порядке выдает правильные написания слов, в которых пользователи "Яндекса" чаще всего ошибаются.
Социальная сеть "Одноклассники", входящая в состав Mail.ru Group, объявила о расширении рекламной сетки, которая предоставит больше возможностей для рекламодателей.

Совет Народных Комиссаров
Share

Statistics Tutor.

I am available for private tutoring in Statistics at the High School and College levels.

I have a Ph.D in Physics and Mathematics.


View Larger Map
I look forward to hearing from you!
Tutoring Location: Bay Ridge, Brooklyn.

Rates:
  • One-hour lesson: $30;
  • Two-hour lesson: $50.
If interested, please contact by email at admin@TutorState.com .
Address: 52 92nd St, Brooklyn, NY, 11209.
Phone: (718) 223-0228.

The following released test questions are taken from the statistics Standards Test

Statistics Tutorial: Important Statistics Formulas

This web page presents statistics formulas described in the Stat Trek tutorials. Each formula links to a web page that explains how to use the formula.

Parameters

  • Population mean = μ = ( Σ Xi ) / N
  • Population standard deviation = σ = sqrt [ Σ ( Xi - μ )2 / N ]
  • Population variance = σ2 = Σ ( Xi - μ )2 / N
  • Variance of population proportion = σP2 = PQ / n
  • Standardized score = Z = (X - μ) / σ
  • Population correlation coefficient = ρ = [ 1 / N ] * Σ { [ (Xi - μX) / σx ] * [ (Yi - μY) / σy ] }

Statistics

Unless otherwise noted, these formulas assume simple random sampling.

  • Sample mean = x = ( Σ xi ) / n
  • Sample standard deviation = s = sqrt [ Σ ( xi - x )2 / ( n - 1 ) ]
  • Sample variance = s2 = Σ ( xi - x )2 / ( n - 1 )
  • Variance of sample proportion = sp2 = pq / (n - 1)
  • Pooled sample proportion = p = (p1 * n1 + p2 * n2) / (n1 + n2)
  • Pooled sample standard deviation = sp = sqrt [ (n1 - 1) * s12 + (n2 - 1) * s22 ] / (n1 + n2 - 2) ]
  • Sample correlation coefficient = r = [ 1 / (n - 1) ] * Σ { [ (xi - x) / sx ] * [ (yi - y) / sy ] }

Correlation

  • Pearson product-moment correlation = r = Σ (xy) / sqrt [ ( Σ x2 ) * ( Σ y2 ) ]
  • Linear correlation (sample data) = r = [ 1 / (n - 1) ] * Σ { [ (xi - x) / sx ] * [ (yi - y) / sy ] }
  • Linear correlation (population data) = ρ = [ 1 / N ] * Σ { [ (Xi - μX) / σx ] * [ (Yi - μY) / σy ] }

Simple Linear Regression

  • Simple linear regression line: y = b0 + b1x
  • Regression coefficient = b1 = Σ [ (xi - x) (yi - y) ] / Σ [ (xi - x)2]
  • Regression slope intercept = b0 = y - b1 * x
  • Regression coefficient = b1 = r * (sy / sx)
  • Standard error of regression slope = sb1 = sqrt [ Σ(yi - yi)2 / (n - 2) ] / sqrt [ Σ(xi - x)2 ]

Counting

  • n factorial: n! = n * (n-1) * (n - 2) * . . . * 3 * 2 * 1. By convention, 0! = 1.
  • Permutations of n things, taken r at a time: nCr = n! / (n - r)!
  • Combinations of n things, taken r at a time: nCr = n! / r!(n - r)! = nPr / r!

Probability

  • Rule of addition: P(A B) = P(A) + P(B) - P(A B)
  • Rule of multiplication: P(A B) = P(A) P(B|A)
  • Rule of subtraction: P(A') = 1 - P(A)

Random Variables

In the following formulas, X and Y are random variables, and a and b are constants.

  • Expected value of X = E(X) = μx = Σ [ xi * P(xi) ]
  • Variance of X = Var(X) = σ2 = Σ [ xi - E(x) ]2 * P(xi) = Σ [ xi - μx ]2 * P(xi)
  • Normal random variable = z-score = z = (X - μ)/σ
  • Chi-square statistic = Χ2 = [ ( n - 1 ) * s2 ] / σ2
  • f statistic = f = [ s1212 ] / [ s2222 ]
  • Expected value of sum of random variables = E(X + Y) = E(X) + E(Y)
  • Expected value of difference between random variables = E(X - Y) = E(X) - E(Y)
  • Variance of the sum of independent random variables = Var(X + Y) = Var(X) + Var(Y)
  • Variance of the difference between independent random variables = Var(X - Y) = E(X) + E(Y)

Sampling Distributions

  • Mean of sampling distribution of the mean = μx = μ
  • Mean of sampling distribution of the proportion = μp = P
  • Standard deviation of proportion = σp = sqrt[ P * (1 - P)/n ] = sqrt( PQ / n )
  • Standard deviation of the mean = σx = σ/sqrt(n)
  • Standard deviation of difference of sample means = σd = sqrt[ (σ12 / n1) + (σ22 / n2) ]
  • Standard deviation of difference of sample proportions = σd = sqrt{ [P1(1 - P1) / n1] + [P2(1 - P2) / n2] }

Standard Error

  • Standard error of proportion = SEp = sp = sqrt[ p * (1 - p)/n ] = sqrt( pq / n )
  • Standard error of difference for proportions = SEp = sp = sqrt{ p * ( 1 - p ) * [ (1/n1) + (1/n2) ] }
  • Standard error of the mean = SEx = sx = s/sqrt(n)
  • Standard error of difference of sample means = SEd = sd = sqrt[ (s12 / n1) + (s22 / n2) ]
  • Standard error of difference of paired sample means = SEd = sd = { sqrt [ (Σ(di - d)2 / (n - 1) ] } / sqrt(n)
  • Pooled sample standard error = spooled = sqrt [ (n1 - 1) * s12 + (n2 - 1) * s22 ] / (n1 + n2 - 2) ]
  • Standard error of difference of sample proportions = sd = sqrt{ [p1(1 - p1) / n1] + [p2(1 - p2) / n2] }

Discrete Probability Distributions

  • Binomial formula: P(X = x) = b(x; n, P) = nCx * Px * (1 - P)n - x = nCx * Px * Qn - x
  • Mean of binomial distribution = μx = n * P
  • Variance of binomial distribution = σx2 = n * P * ( 1 - P )
  • Negative Binomial formula: P(X = x) = b*(x; r, P) = x-1Cr-1 * Pr * (1 - P)x - r
  • Mean of negative binomial distribution = μx = rQ / P
  • Variance of negative binomial distribution = σx2 = r * Q / P2
  • Geometric formula: P(X = x) = g(x; P) = P * Qx - 1
  • Mean of geometric distribution = μx = Q / P
  • Variance of geometric distribution = σx2 = Q / P2
  • Hypergeometric formula: P(X = x) = h(x; N, n, k) = [ kCx ] [ N-kCn-x ] / [ NCn ]
  • Mean of hypergeometric distribution = μx = n * k / N
  • Variance of hypergeometric distribution = σx2 = n * k * ( N - k ) * ( N - n ) / [ N2 * ( N - 1 ) ]
  • Poisson formula: P(x; μ) = (e) (μx) / x!
  • Mean of Poisson distribution = μx = μ
  • Variance of Poisson distribution = σx2 = μ
  • Multinomial formula: P = [ n! / ( n1! * n2! * ... nk! ) ] * ( p1n1 * p2n2 * . . . * pknk )

Linear Transformations

For the following formulas, assume that Y is a linear transformation of the random variable X, defined by the equation: Y = aX + b.

  • Mean of a linear transformation = E(Y) = Y = aX + b.
  • Variance of a linear transformation = Var(Y) = a2 * Var(X).
  • Standardized score = z = (x - μx) / σx.
  • t-score = t = (x - μx) / [ s/sqrt(n) ].

Estimation

  • Confidence interval: Sample statistic + Critical value * Standard error of statistic
  • Margin of error = (Critical value) * (Standard deviation of statistic)
  • Margin of error = (Critical value) * (Standard error of statistic)

Hypothesis Testing

  • Standardized test statistic = (Statistic - Parameter) / (Standard deviation of statistic)
  • One-sample z-test for proportions: z-score = z = (p - P0) / sqrt( p * q / n )
  • Two-sample z-test for proportions: z-score = z = z = [ (p1 - p2) - d ] / SE
  • One-sample t-test for means: t-score = t = (x - μ) / SE
  • Two-sample t-test for means: t-score = t = [ (x1 - x2) - d ] / SE
  • Matched-sample t-test for means: t-score = t = [ (x1 - x2) - D ] / SE = (d - D) / SE
  • Chi-square test statistic = Χ2 = Σ[ (Observed - Expected)2 / Expected ]

Degrees of Freedom

The correct formula for degrees of freedom (DF) depends on the situation (the nature of the test statistic, the number of samples, underlying assumptions, etc.).

  • One-sample t-test: DF = n - 1
  • Two-sample t-test: DF = (s12/n1 + s22/n2)2 / { [ (s12 / n1)2 / (n1 - 1) ] + [ (s22 / n2)2 / (n2 - 1) ] }
  • Two-sample t-test, pooled standard error: DF = n1 + n2 - 2
  • Simple linear regression, test slope: DF = n - 2
  • Chi-square goodness of fit test: DF = k - 1
  • Chi-square test for homogeneity: DF = (r - 1) * (c - 1)
  • Chi-square test for independence: DF = (r - 1) * (c - 1)

Sample Size

Below, the first two formulas find the smallest sample sizes required to achieve a fixed margin of error, using simple random sampling. The third formula assigns sample to strata, based on a proportionate design. The fourth formula, Neyman allocation, uses stratified sampling to minimize variance, given a fixed sample size. And the last formula, optimum allocation, uses stratified sampling to minimize variance, given a fixed budget.

  • Mean (simple random sampling): n = { z2 * σ2 * [ N / (N - 1) ] } / { ME2 + [ z2 * σ2 / (N - 1) ] }
  • Proportion (simple random sampling): n = [ ( z2 * p * q ) + ME2 ] / [ ME2 + z2 * p * q / N ]
  • Proportionate stratified sampling: nh = ( Nh / N ) * n
  • Neyman allocation (stratified sampling): nh = n * ( Nh * σh ) / [ Σ ( Ni * σi ) ]
  • Optimum allocation (stratified sampling):
    nh = n * [ ( Nh * σh ) / sqrt( ch ) ] / [ Σ ( Ni * σi ) / sqrt( ci ) ]

AP Statistics Test

Sample Questions & Scoring Guidelines

The AP Statistics Exam covers the following major topics: exploring data; planning a study (deciding what and how to measure); anticipating patterns (using probability and simulation); and statistical inference (confirming models).

Ideally, students should have access to a computer for work both in and out of the classroom. While it is not yet possible to have access to a computer during the AP Statistics Exam, the exam may include standard computer output, and students will be expected to interpret it.

You can find additional free-response questions and scoring guidelines on AP Central, along with grade distributions and examples of actual students' responses and commentary that explains why the responses received the scores they did.

Multiple-Choice Questions

For sample multiple-choice questions, refer to the Course Description.
AP Statistics Course Description (.pdf/2.52M)
Requires Adobe Reader (latest version recommended).

Free-Response Questions

2011 Free-Response Questions (.pdf/417K)
2011 Form B Free-Response Questions (.pdf/331K)
2010 Free-Response Questions (.pdf/170K)
2010 Form B Free-Response Questions (.pdf/231K)
2009 Free-Response Questions (.pdf/671K)
2009 Form B Free-Response Questions (.pdf/582K)
2008 Free-Response Questions (.pdf/267K)
2008 Form B Free-Response Questions (.pdf/272K)
2007 Free-Response Questions (.pdf/462K)
2007 Form B Free-Response Questions (.pdf/349K)
2006 Free-Response Questions (.pdf/224K)
2006 Form B Free-Response Questions (.pdf/165K)
2005 Free-Response Questions (.pdf/322K)
2005 Form B Free-Response Questions (.pdf/304K)
2004 Free-Response Questions (.pdf/289K)
2004 Form B Free-Response Questions (.pdf/287K)
2003 Free-Response Questions (.pdf/225K)
2003 Form B Free-Response Questions (.pdf/275K)
2002 Free-Response Questions (.pdf/268K)
2002 Form B Free-Response Questions (.pdf/215K)
2001 Free-Response Questions (.pdf/275K)

Scoring Guidelines

2010 Scoring Guidelines (.pdf/123K)
2010 Form B Scoring Guidelines (.pdf/104K)
2009 Scoring Guidelines (.pdf/105K)
2009 Form B Scoring Guidelines (.pdf/101K)
2008 Scoring Guidelines (.pdf/175K)
2008 Form B Scoring Guidelines (.pdf/274K)
2007 Scoring Guidelines (.pdf/277K)
2007 Form B Scoring Guidelines (.pdf/260K)
2006 Scoring Guidelines (.pdf/139K)
2006 Form B Scoring Guidelines (.pdf/282K)
2005 Scoring Guidelines (.pdf/212K)
2005 Form B Scoring Guidelines (.pdf/204K)
2004 Scoring Guidelines (.pdf/653K)
2004 Form B Scoring Guidelines (.pdf/607K)


Hunter College

Statistics Course Rotation Schedule
Course Number Course Title Semester Offered
     
STAT 110 Selected Topics in Elementary Probability and Statistics as Applied to Popular Science and Current Events TBA
STAT 113 Elementary Probability and Statistics -syllabus fall, spring, summer
STAT 212 Discrete Probability - syllabus fall. spring
STAT 213 Introduction to Applied Statistics - syllabus fall, spring, summer
STAT 214 Data Analysis Using Statistical Software - syllabus fall
STAT 220 Statistical Analyses in Forensics - syllabus spring
STAT 295 Intermediate Topics in Statistics TBA
STAT 311 Probability Theory -syllabus fall, spring
STAT 312 Stochastic Processes - syllabus spring
STAT 313 Introduction to Mathematical Statistics - syllabus spring
STAT 319 Bayesian Statistical Inference in the Sciences - syllabus fall
STAT 391-2-3 (Undergraduate) Independent Study in Statistics fall, spring, summer
STAT 395 Advanced Topics in Statistics TBA
STAT 486 Elements of Visualization - syllabus even spring semesters
STAT 612 Discrete Probability spring
STAT 614 Data Analysis Using Statistical Software - syllabus fall, summer
STAT 701 Advanced Probability Theory I fall, spring
STAT 702 Advanced Probability Theory II spring
STAT 703 Mathematical Statistics spring
STAT 706 General Linear Models I fall
STAT 707 General Linear Models II spring
STAT 715 Time Series Analysis spring
STAT 716 Data Analysis TBA
STAT 717 Multivariate Analysis fall
STAT 718 Analysis of Variance - syllabus odd spring semesters
STAT 722 Theory of Games even fall semesters
STAT 724 Topics in Applied Mathematics I TBA
STAT 725 Topics in Applied Mathematics II TBA
STAT 726 Theory and Methods of Sampling odd fall semesters
STAT 739 Bayesian Statistics fall
STAT 750 Applied Biostatistics I fall, spring
STAT 751 Applied Biostatistics II fall
STAT 752 Categorical Data Analysis -syllabus even spring semesters
STAT 753 Longitudinal Data Analysis even spring semesters
STAT 754 Analysis and Design of Complex Surveys even fall semesters
STAT 755 Survival Analysis odd spring semesters
STAT 761 Advanced Concepts in Financial Markets spring
STAT 786 Visualization for Stat. and Applied Math. even spring semesters
STAT 787 Statistical Models for Spatial Data odd fall semesters
STAT 790 Case Seminar fall, spring
STAT 791-2-3 (Graduate) Independent Study in Statistics fall, spring, summer

Are you looking for more tutors?

  1. Tutoring Service
  2. Private tutoring in Chemistry
  3. Тютор по Химии для школьников и студентов в Нью-Йорке

Environmental Health Center

 

Метки:  

 

Добавить комментарий:
Текст комментария: смайлики

Проверка орфографии: (найти ошибки)

Прикрепить картинку:

 Переводить URL в ссылку
 Подписаться на комментарии
 Подписать картинку