[Перевод] Генерируем уровни для игры с помощью нейросетей
|
|
Понедельник, 19 Марта 2018 г. 10:14
+ в цитатник
Предисловие
За последние несколько лет прогресс в области искусственного интеллекта привёл к созданию методов машинного обучения на основе обучения представлениям (representation-learning) с несколькими слоями абстракции — так называемому «глубокому обучению». Общественное и медийное внимание было привлечено к этой области исследований благодаря древнекитайской настольной игре го. Несмотря на то, что сложность го часто сравнивают со сложностью самой жизни, программе
AlphaGo, использующей глубокое обучение с подкреплением (deep reinforcement learning), удалось превзойти мирового чемпиона по го Ли Седоля. Удивительно, что исследования ИИ были использованы в играх и получили такое широкое общественное внимание. Стоит также заметить, что один из разработчиков AlphaGo, Демис Хассабис, был ведущим программистом Theme Park (1994 год) и ведущим программистом ИИ Black & White (2001 год). Игры и современный прогресс ИИ, возможно, имеют некую корреляцию.
Эта статья является постмортемом, отчётом о попытке нашей команды реализации генерирования уровней для
Fantasy Raiders с помощью различных методов искусственных нейронных сетей. Раньше генерирование уровней было процессом кодирования знаний разработчика игры с помощью неких вероятностных техник. Однако для
Fantasy Raiders мы написали программу, которая могла учиться и генерировать уровни на основании наших данных. Как нам кажется, в результате мы получили всего лишь ключ к решению задачи генерирования уровней, а не общее решение. Чтобы поделиться нашими открытиями с другими разработчиками игр мы хотим подробно рассказать о процессе наших исследований, от начала до конца.
Читать дальше ->
https://habrahabr.ru/post/350718/
Метки:
author PatientZero
разработка игр
машинное обучение
процедурная генерация уровней
нейронные сети
-
Запись понравилась
-
0
Процитировали
-
0
Сохранили
-