[Перевод] Нейросеть для определения лиц, встроенная в смартфон
|
|
Понедельник, 04 Декабря 2017 г. 10:20
+ в цитатник

Apple начала использовать глубинное обучение для определения лиц начиная с iOS 10. С выпуском фреймворка Vision разработчики теперь могут использовать в своих приложениях эту технологию и многие другие алгоритмы машинного зрения. При разработке фреймворка пришлось преодолеть значительные проблемы, чтобы сохранить приватность пользователей и эффективно работать на железе мобильного устройства. В статье обсуждаются эти проблемы и описывается, как работает алгоритм.
Введение
Впервые определение лиц в публичных API появилось во фреймворке Core Image через класс CIDetector. Эти API работали и в собственных приложениях Apple, таких как Photos. Самая первая версия CIDetector использовала для определения метод на базе алгоритма Виолы — Джонса
[1]. Последовательные улучшения CIDetector были основаны на достижениях традиционного машинного зрения.
С появлением глубинного обучения и его применения к проблемам машинного зрения точность систем определения лиц сделала значительный шаг вперёд. Нам пришлось полностью переосмыслить наш подход, чтобы извлечь выгоду из этой смены парадигмы. По сравнению с традиционным машинным зрением модели в глубинном обучении требуют на порядок больше памяти, намного больше дискового пространства и больше вычислительных ресурсов.
Читать дальше ->
https://habrahabr.ru/post/343810/
-
Запись понравилась
-
0
Процитировали
-
0
Сохранили
-