-Поиск по дневнику

Поиск сообщений в rss_habrahabr_of_lokoman

 -Подписка по e-mail

 

 -Статистика

Статистика LiveInternet.ru: показано количество хитов и посетителей
Создан: 16.03.2008
Записей:
Комментариев:
Написано: 2


Теорема Бошерницана

Воскресенье, 15 Июля 2018 г. 11:34 + в цитатник
В статье дано простое доказательство того, что отображение компактного метрического пространства в себя, не уменьшающее расстояния, является изометрией.



Отображение $f:E\rightarrow E$ метрического пространства с метрикой $\rho (\cdot ,\cdot )$ называют изометрией, если для любых $x,y\in E$ справедливо равенство $\rho (x,y)=\rho (f(x),f(y))$. Мы докажем здесь следующее утверждение:

Теорема. Если $f:E\rightarrow E$ отображение компактного метрического пространства в себя, такое что

$\rho (x,y)\leq \rho (f(x),f(y))(1)$

для любых $x,y\in E$, то отображение $f$ — изометрия.

Напомним некоторые простые утверждения о метрических компактах и введём некоторые соглашения и определения, необходимые для дальнейшего изложения.

Через $|A|$ будем обозначать количество элементов конечного множества $A$.

Для $x\in E$ и $\varepsilon >0$ множество $Q_{x,\varepsilon }=\{y:y\in E,\rho (x,y)<\varepsilon \}$ назовем $\varepsilon$-окрестностью точки $x$ (или открытым шаром с центром в точке $x$ и радиусом $\varepsilon$).

Конечное множество $A\subset E$ назовём $\varepsilon$-сетью в $E$ (или просто $\varepsilon$-сетью), если для любой точки $x\in E$ найдётся точка $y\in A$ такая, что $\rho (x,y)<\varepsilon$. Множество $B\subset E$ назовём $\varepsilon$-разреженным, если $\rho (x,y)\geq \varepsilon$ для любых $x,y\in B$, таких, что $x\neq y$.

Для любого конечного множества $A=\left\{a_1,\ldots ,a_m\right\}\subset E$ обозначим через $l(A)$ сумму $\sum _{i\leq j} \rho \left(a_i,a_j\right)$. Величину $l(A)$ назовём длиной множества $A$.
Читать дальше ->

https://habr.com/post/417225/?utm_source=habrahabr&utm_medium=rss&utm_campaign=417225


 

Добавить комментарий:
Текст комментария: смайлики

Проверка орфографии: (найти ошибки)

Прикрепить картинку:

 Переводить URL в ссылку
 Подписаться на комментарии
 Подписать картинку