Сравнение библиотек глубокого обучения на примере задачи классификации рукописных цифр
|
|
Вторник, 07 Апреля 2015 г. 20:45
+ в цитатник
Кручинин Дмитрий, Долотов Евгений, Кустикова Валентина, Дружков Павел, Корняков Кирилл
Введение
В настоящее время машинное обучение является активно развивающейся областью научных исследований. Это связано как с возможностью быстрее,
выше, сильнее, проще и дешевле собирать и обрабатывать данные, так и с развитием методов выявления из этих данных законов, по которым протекают физические, биологические, экономические и другие процессы. В некоторых задачах, когда такой закон определить достаточно сложно, используют глубокое обучение.
Глубокое обучение (deep learning) рассматривает методы моделирования высокоуровневых абстракций в данных с помощью множества последовательных нелинейных трансформаций, которые, как правило, представляются в виде искусственных нейронных сетей. На сегодняшний день нейросети успешно используются для решения таких задач, как прогнозирование, распознавание образов, сжатие данных и ряда других.
Читать дальше → http://habrahabr.ru/post/254747/
-
Запись понравилась
-
0
Процитировали
-
0
Сохранили
-