-Поиск по дневнику

Поиск сообщений в rss_habrahabr_of_lokoman

 -Подписка по e-mail

 

 -Статистика

Статистика LiveInternet.ru: показано количество хитов и посетителей
Создан: 16.03.2008
Записей:
Комментариев:
Написано: 2


[Перевод] Руководство хакера по нейронным сетям. Глава 2: Машинное обучение. Обучение сети на основе метода опорных векторов (SVM)

Пятница, 26 Декабря 2014 г. 13:19 + в цитатник

Содержание:
Глава 1: Схемы реальных значений
Часть 1:
   Введение   
      Базовый сценарий: Простой логический элемент в схеме
      Цель
         Стратегия №1: Произвольный локальный поиск

Часть 2:
         Стратегия №2: Числовой градиент

Часть 3:
         Стратегия №3: Аналитический градиент

Часть 4:
      Схемы с несколькими логическими элементами
         Обратное распространение ошибки

Часть 5:
         Шаблоны в «обратном» потоке 
      Пример "Один нейрон"

Часть 6:
      Становимся мастером обратного распространения ошибки


Глава 2: Машинное обучение
Часть 7:
      Бинарная классификация

Часть 8:
      Обучение сети на основе метода опорных векторов (SVM)



В качестве конкретного примера давайте рассмотрим SVM. SVM – это очень популярный линейный классификатор. Его функциональная форма имеет именно такой же вид, как я описывал в предыдущем разделе — f(x,y)=ax+by+c. На данном этапе, если вы видели описание SVM, вы наверняка ожидаете, что я буду определять функцию потерь SVM и погружаться в пояснения свободных переменных, геометрических понятий больших полей, ядер, двойственности и пр. Но здесь я бы хотел воспользоваться другим подходом.
Читать дальше →

http://habrahabr.ru/post/246849/

Метки:  

 

Добавить комментарий:
Текст комментария: смайлики

Проверка орфографии: (найти ошибки)

Прикрепить картинку:

 Переводить URL в ссылку
 Подписаться на комментарии
 Подписать картинку