Выдающийся индийский математик Сриниваса Айенгор Рамануджан (1887–1920) был “открыт” Г.Х. Харди, кембриджским профессором математики, всю свою жизнь посвятившим науке.
Юношей Рамануджан жил с родителями в маленьком индийском городке. Однажды ему в руки попался английский учебник математики. Мальчик увлекся и начал изучать одну за другой самые разные области этой науки, записывая свои размышления в школьные тетради. Тетради эти он разослал нескольким британским математикам, но только Харди обратил на них внимание и понял, что столкнулся с неграмотным гением. Он оплатил из собственного кармана Рамануджану дорогу в Кембридж, а там стал его наставником и другом.
Известна история о том, как Харди пришел навестить Рамануджана в лондонской больнице. Харди приехал на такси, и пошел в комнату, где лежал Рамануджан. Харди всегда было трудно начать разговор, и он произнес первое, что пришло ему в голову: “Номером моего такси было 1729. По-моему, довольно непримечательное число”. Рамануджан тут же воскликнул: “Нет, Харди, нет! Вы не правы! Ведь это наименьшее число, которое можно двумя разными способами представить в виде суммы двух кубов”. Так тот диалог записал сам Харди. Наверняка он ничего не сочинил. Харди был честнейшим из людей, и, кроме того, никто просто не смог бы подобное выдумать.
▪️Такая феноменальная способность к вычислениям, похоже, у лучших математиков не редкость. Вот другой пример. Кто-то попросил у Александра Кейга Эйткена, профессора Эдинбургского университета, поделить 4 на 47. Через 4 секунды он стал произносить по цифре в три четверти секунды: “Ноль, запятая, 08510638297842340425531914’'. Он остановился, минуту пообсуждал задачу и продолжил: “191489, — пятисекундная пауза, — 361702127659574468. Тут заканчивается период, следующий снова начнется с 085. Итак, если тут 46 знаков, то я прав”. Многим из нас этот человек покажется инопланетянином, особенно после такого заключительного комментария.
Уолтер Гратцер, "Эврики и эйфории"
На фото матаматик Рамануджан