Понедельник, 29 Мая 2017 г. 21:35
+ в цитатник
"Блеск и нищета" квантовой механикиНиколай Носков
Прошла пьянящая радость побед в открытии и становлении квантовой механики. На основании исследования спектров излучения и поглощения фотонов возник мощный математико-физический формализм, изобилующий принципами, догадками, постулатами, толкованиями, моделями и загадочными формулами, которые, как ни странно, работают.....
....Если бы исследователи не обвиняли на каждом шагу классическую механику в несостоятельности, а поискали в ней аналогии, то сразу бы увидели, что в любом реальном колебании твердого тела присутствуют те же проблемы, что и в "соотношении неопределенностей" Гейзенберга. Так, если определить в некоторый момент времени скорость и импульс колеблющегося тела, то нельзя определить полную энергию колебания, если же определить энергию, то теряет смысл мгновенная скорость и импульс.
Русские физики Тернов и Соколов [9] в 1969 г. все-таки нашли логический вывод уравнения Шредингера. Оказалось, что уравнение Шредингера – это система трех известных уравнений. Одно из них – соотношение для длин волн де Бройля. Второе – закон сохранения энергии на орбите Гамильтона. Третье – общее волновое уравнение колебания среды, выведенное для звука Гельмгольцем и для света в эфире – Максвеллом.
Для математического формализма, конечно, не имеет значения, какие уравнения объединены в систему, но для физика классической механики совершенно неприемлемо решать совместную систему уравнений, одно из которых является законом движения твердого тела, а другое – законом колебания среды. Поэтому уравнения Шредингера и Дирака нельзя считать физическими. Отсюда всякие парадоксы, статистические решения, "размазанность" электрона и т.д.
Из всего выше сказанного следует, что устойчивые состояния электронов на орбите можно найти из резонанса двух колебаний: циклического, определяемого из равновесия сил на орбите и продольного, определяемого формулой вида де Бройля. Так как резонанс этих частот возможен лишь при полной длине продольного колебания, то отсюда и следует целочисленная последовательность устойчивых дискретных орбит.....
http://science-freaks.livejournal.com/2954431.html
Метки:
Эйнштейн-неправ
идиоты
недоучки
-
Запись понравилась
-
0
Процитировали
-
0
Сохранили
-