, 14 2010 . 18:25
+
" ": , : r=cos2φ. . :S=1/2αβ∫r2(φ)dφ.. 0 S=2S1S=0∫cos2φdφ=0∫(1+cos4φ)/2dφ=1/2φ/0+1/8*sin4φ/0=/2. " ": , :x=2*((sint)^2), =0, y>0 , y=3cost t Pi/2 0S=∫abx(t)*y'(t)dty'(t)=-3*sin(t)S=∫Pi/20x(t)*y'(t)dt=∫Pi/202*sin2(t)*(-3*sin(t))dt=6*∫0Pi/2sin3(t)dt=6*∫0Pi/2(1-cos2(t))*sin(t)dt=6*(-cos(t)+cos3(t)/3)|0Pi/2=6*(1-1/3)=4. " ": , :y=1/((x*x+1)^2)x>=0y=0. :S=∫0∞dx/(x2+1)2=∫0∞(x2x2)/(x2+1)2)dx=∫0∞dx/(x2+1)-∫0∞x2dx/(x2+1)2 :∫udv=u*v-∫vduu=xdv=xdx/(x2+1)2v=∫xdx/(x2+1)2=(1/2)*∫(x2+1)-2d(x2+1)=-(1/2)*1/(x2+1)∫udv=∫x2dx/(x2+1)2=-(1/2)*x/(x2+1)+(1/2)*∫dx/(x2+1)=-(1/2)*x/(x2+1)+(1/2)*arctg(x)∫dx/(x2+1)2=arctg(x)-(-(1/2)*x/(x2+1)+(1/2)*arctg(x))=1/2*(arctg(x)+x/(x2+1))S=∫0∞dx/(x2+1)2=1/2*(arctg(x)+x/(x2+1))|0∞=(1/2)*limx->∞(arctg(x)+x/(x2+1))=(1/2)*limx->∞arctg(x)+(1/2)*limx->∞x/(x2+1)=(1/2)*Pi/2+(1/2)*0=Pi/4
:
3