-Рубрики

 -Цитатник

Платье крючком вязанное сверху - (0)

Платье крючком вязанное сверху       Пряжа COCO! Крючок ...

летний зефир - платье с шишечками от Ребекки Тейлор - (0)

летний зефир - платье с шишечками от Ребекки Тейлор источник: http://kniti.ru вяжут на осинке: ...

Йумор - (0)

Карикатуры (Вампиры) (с) Елена Завгородняя

Драгоценности дома Романовых. - (0)

Драгоценности дома Романовых. Приданное В. кн. Анны Павловны. Жан Батист ван дер Хулст Портрет...

10 самых страшных мест в мире - (0)

10 самых страшных мест в мире! КОСТЕЛ СВЯТОГО ИРЖИ В чешском поселке Лукова с XI...

 -Фотоальбом

Посмотреть все фотографии серии Тайга
Тайга
00:17 03.08.2014
Фотографий: 20
Посмотреть все фотографии серии Цветы
Цветы
14:18 27.02.2014
Фотографий: 20
Посмотреть все фотографии серии Фантастика
Фантастика
00:31 21.10.2013
Фотографий: 20

 -Всегда под рукой

 -Поиск по дневнику

Поиск сообщений в Instara

 -Подписка по e-mail

 

 -Статистика

Статистика LiveInternet.ru: показано количество хитов и посетителей
Создан: 02.08.2012
Записей:
Комментариев:
Написано: 1383


Черные дыры (продолжение)

Вторник, 25 Июня 2013 г. 02:57 + в цитатник

В космосе часто встречаются звездные пары, в которых одним компонентом является звезда-гигант (или сверхгигант), а вторым – маленькое компактное тело, которое может являться или черной дырой или нейтронной звездой. Имеются косвенные доказательства существования черных дыр более чем в 10 тесных двойных системах. Об их наличии свидетельствует отсутствие проявлений твердой поверхности, характерных для нейтронных звезд, и наличие массы у невидимого компонента более 3 солнечных. Ее гравитационное поле может оказаться достаточно сильным, чтобы срывать вещество с нормальной дыры. Газ начинает отделяться от внешних слоев звезды и падать на невидимый спутник по спирали, причем сам газ будет доступен наблюдениям. Газ постоянно ускоряется, его частицы постоянно взаимодействуют между собой – в результате газ сильно разогревается и становится источником высокоэнергичного излучения в гамма и рентгеновском диапазонах. Следовательно, излучает не сама черная дыра, а газ на подходе к ней. Такое излучение невозможно принять с Земли, его не пропустит атмосфера. Его регистрируют при помощи внеатмосферных приемников рентгеновского излучения (космические обсерватории). Видимая звезда выдает наличие своего невидимого партнера своим движением. Она обращается вокруг “пустого” места.


Одним из наиболее вероятных кандидатов в черные дыры является ярчайший источник рентгеновских лучей в созвездии Лебедя – Лебедь Х-1. Газовый диск с газовыми струями, излучающих рентген, огромная голубая звезда с массой не менее 10 солнечных, кружащая вокруг рентгеновского источника – вот портрет далекой звезда V 1343 в созвездии Орла, более известной как объект SS 433. До 1978г эта звезда не привлекала к себе особого внимания. Открытия последовали в 1979-1980гг и продолжаются до сих пор. Наблюдая за звездой ночью, американским и итальянским астрономам удалось обнаружить в спектре этой звезды 3 системы эмиссионных линий водорода и гелия. Кроме ярких основных и неподвижных линий имелись 2 системы линий, “гулявших” по спектру с периодом 163 дня. Эти смещения говорили о движении вещества в двух противоположных направлениях со скоростью, достигающей четверти скорости света ~ 78000км/с. Детальные наблюдения показали, что SS 433 – тесная затменная система, период обращения которой равен 13,1 суток. Видимая голубая звезда имеет температуру около 30000К и обладает светимостью, примерно в миллион раз превышающую светимость солнца. Она слишком велика, чтобы сохранить свою целостность в поле тяготения очень компактной второй звезды, и поэтому с нее постоянно перетекает вещество на соседку, образуя аккреционный диск. Наличие рентгеновского излучения окончательно подтвердило наличие компактного тела (черная дыра или нейтронная звезда), ведь только при аккреции на них испускается рентгеновское излучение. Компактный источник окружен непрозрачным и очень ярким слоем плазмы с температурой в сотни тысяч градусов. Рентгеновские спектры плазмы выявили мощнейшую ионизацию атомов железа, до гелие-водородоподобных состояний (т.е. вместо 26 электронов имеется только 1 или 2). Остальные выбиваются со своих орбит ударами релятивистских электронов или рентгеновскими квантами. Аккреционный диск раз в 13 дней затмевает звезду.
Другие рентгеновские источники в нашей галактике считаются черными дырами на основании иных - например, спектроскопических - аргументов. К примеру, полагают, что гамма-излучение (с энергиями более 100кэВ) внутренних частей аккреционного диска могло бы свидетельствовать о наличии черной дыры, а не нейтронной звезды, так как жесткое излучение отражалось бы поверхностью нейтронной звезды и охлаждало диск. Если это действительно так, то многие "гамма - новые", в которых измерение массы невозможно (из-за отсутствия оптической компоненты или иных сложностей), могут быть также хорошими кандидатами в черные дыры. Особенно это относится к Новой Орла 1992 года (Nova Aquila 1992) и источнику 1 E 17407-2942, у которых наблюдаются также радиовыбросы - "джеты". Эти "микроквазары", в которых идет как аккреция, так и выброс вещества, демонстрируют интересную связь высокоэнергичных явлений на масштабах звезд и галактик.


На картинках внизу показан процесс "поедания" черной дырой раскаленного газа.






Серия сообщений "Тайны мироздания":
Часть 1 - Кыштымский карлик
Часть 2 - Пещера скелетов
...
Часть 12 - ...
Часть 13 - Черные дыры.
Часть 14 - Черные дыры (продолжение)
Часть 15 - Все тайны космоса. Вселенная от начала и до конца
Часть 16 - История филиппинского экзорциста
...
Часть 39 - Инопланетные сообщества могут быть совсем не такими как мы их представляем
Часть 40 - ТУНГУССКИЙ МЕТЕОРИТ: ВСЕ ВЕРСИИ
Часть 41 - В «зоне обитания» ближайшей к Земле звезды обнаружена планета. О ее климате и возможной обитаемости

Серия сообщений "Документальное кино":
Часть 1 - Семь чудес солнечной системы
Часть 2 - Тайны Ордена Тамплиеров
...
Часть 10 - Воины духа. Самураи - воины восходящего солнца.
Часть 11 - Черные дыры.
Часть 12 - Черные дыры (продолжение)
Часть 13 - Все тайны космоса. Вселенная от начала и до конца
Часть 14 - Эта неизвестная Луна
Часть 15 - Тайны Вселенной. Бог и Вселенная (2011)
Часть 16 - Тайны истории. Зорро

Метки:  

Instara   обратиться по имени Разрушение звезд. Вторник, 25 Июня 2013 г. 02:59 (ссылка)
Для активных галактических ядер пределы на темп аккреции составляют 10-2 - 102M/год. Встает вопрос, какой именно механизм способен его обеспечить для гигантской черной дыры. Достаточно эффективна, например, потеря массы пролетающими рядом звездами. Современные модели галактических ядер предполагают массивную черную дыру, окруженную плотным звездным облаком. Из-за диффузии орбит некоторые звезды залетают достаточно глубоко в гравитационных потенциал черной дыры по сильно вытянутым орбитам. Звезды могут разрушаться либо под действием приливных сил, либо за счет столкновений с другими звездами. Радиус столкновений Rcoll7*1010M/ M см для солнцеподобных звезд определяется как расстояние, на котором скорость свободного падения сравнивается со скоростью убегания на поверхности звезды V*(порядка 500км/с для нормальных звезд); при столкновении двух звезд внутри Rcoll они частично или полностью разрушаются.
р (396x193, 7Kb)
Приливный радиус и радиус столкновений.

Кроме того, звезды, попавшие внутрь критического приливного радиуса
RT≈6 * 1013(M/(108M๏))1/3 см. для солнцеподобных звезд, будут неизбежно разрушены приливными силами. β - является фактором разрушения, величина которого определяет судьбу звезды. В случае столкновения величина β=Vrel/ V* играет ту же роль, что и фактор β=RT/RP в случае разрушения приливными силами (где RP - высота периастра). Как только выполняется условие β≤1, звезда разрушается, а когда β≤5, звезды сильно деформируются при столкновении. Ученые установили, что звезда, попавшая внутрь сферы приливного радиуса, сдавливается приливными силами в короткоживущую очень горячую блиноподобную конфигурацию. Рисунок показывает процесс деформации звезды. Слева показана деформация звезды в плоскости ее орбиты, а справа - в перпендикулярном направлении. От a до d приливные силы слабы, и звезда остается почти сферической. В точке e звезда проходит приливной радиус и становится сигарообразной. От e до g становится все более важным "эффект катка", и звезда уплощается в орбитальной плоскости до формы изогнутого "блина". Когда звезда покидает сферу приливного радиуса, пролетев вблизи черной дыры, она вновь расширяется, вновь становится сигарообразной. Чуть позже звезда наконец разваливается на куски.
Если же звезда пролетает достаточно близко от черной дыры (например, β≤10), ее центральная температура за долю секунды возрастает до миллиарда градусов, сильно увеличивается скорость термоядерных реакций, такие элементы, как гелий, азот и кислород мгновенно переходят в более тяжелые за счет захвата протонов или альфа-частиц. В "звездном блине" происходит термоядерный взрыв, давая в результате "случайную сверхновую". Этот взрыв имеет далеко идущие последствия: порядка 50% звездных "обломков" выбрасываются (за счет энергии взрыва) с огромной скоростью прочь от черной дыры горячим газовым облаком, остальное вещество падает на черную дыру, вызывая вспышку излучения. Как и сверхновые, "звездные блины" являются теми тиглями, в которых рождаются тяжелые элементы, потом рассеиваемые по всей галактике. Таким образом, наблюдения высокоскоростных облаком и необычно высокого обилия редких изотопов в окрестностях галактических ядер могло бы послужить аргументом в пользу наличия там черных дыр.

р2 (444x249, 10Kb)
Разрушение звезды приливными силами вблизи черной дыры

Сопровождаемое взрывом или нет, приливное разрушение звезды должно вызывать вспышку излучения на шкале нескольких месяцев (столько требуется веществу звезды, чтобы полностью исчезнуть в черной дыре). Для описания эволюции звезды нами была разработана приближенная "аффинная модель", предполагающая эллипсоидальность слоев постоянной плотности. Многие астрофизики сомневались в предсказаниях такой модели до тех пор, пока по всему миру не были проведены детальные трехмерные расчеты, подтвердившие ее основные свойства и предсказания (хотя формирование ударных волн и может немного понизить центральную плотность "блина").
В промежутке между 1991 и 1993 годами ультрафиолетовая светимость ядра эллиптической галактики NGC 4552 возросла до 106L๏ на шкале времени, согласующейся с предсказаниями теории приливного разрушения звезды, хотя светимость и оказалась примерно на 4 порядка ниже, чем ожидалось, что может свидетельствовать о неполном разрушении звезды.
Ответить С цитатой В цитатник
Instara   обратиться по имени BBC — Космос. Сверхмассивные черные дыры Вторник, 25 Июня 2013 г. 03:05 (ссылка)

Ответить С цитатой В цитатник
Instara   обратиться по имени Черные дыры нагревают межгалактическое пространство. Вторник, 25 Июня 2013 г. 03:08 (ссылка)

Галактические кластеры - наиболее крупные объекты Вселенной, состоящие из тысяч галактик, таких, как наш Млечный путь, образовались из гигантских облаков первобытного газа. После этого остатки горячего газа заполнили пространство между галактиками. Теоретически, газ должен охлаждаться с течением времени, но практически этого не происходит.
Сейчас исследователи утверждают, что могут раскрыть загадку, которая возникла уже более трех десятилетий назад. Согласно данным, опубликованным в журнале Nature, ученые обнаружили, что мощные потоки энергии, испускаемые сверхмассивными черными дырами, нагревают газ в межгалактическом пространстве.
Исследователи Кристин Кейзер из университета в Саутгемптоне и Маркус Брюген из международного университета в Бремене, Германия, использовали суперкомпьютер для моделирования процессов, происходящих с межгалактическим газом.
Наличие газа между галактиками определяют по испускаемым ими рентгеновским лучам. Но такое излучение должно уводить тепло и вызывать охлаждение газа, который в течение миллиардов лет конденсировался и образовывал галактики и звезды. Однако астрономы обнаружили, что по прошествии нескольких миллиардов лет со времени рождения кластеров газ в них так и не остыл.
Внутри галактических кластеров существует ряд галактик, связанных сверхмассивными черными дырами, каждая из которых эквивалентна по массе миллиардам звезд. Некоторые из черных дыр активно поглощают вещество. Они забирают все, что к ним приближается, а захваченное вещество, притягиваясь, может ускоряться до скорости света.
При такой скорости материя сильно разогревается и испускает рентгеновские лучи, по которым астрономы судят о наличии черных дыр. Рентгеновские лучи и другое электромагнитное излучение выбрасывается за пределы галактики в двух противоположных направлениях вдоль оси ее вращения. Однако другие галактики с черными дырами, включая наш Млечный путь, ведут себя не так - они не испускают радиацию, и причина этого остается загадкой.
Когда газ в межгалактическом пространстве начинает остывать, он становится более стабильным и в итоге втягивается в галактики под действием гравитации. В конце концов, он остывает до такой температуры, что поглощается черной дырой. Затем газ снова нагревается, закручиваясь внутрь спирали, и его энергия выходит обратно в межгалактическое пространство в виде мощных потоков.
Такие энергетические потоки могут слиться в единый взрыв, эквивалентный 10 миллиардам сверхновых звезд, и заново нагреть газ внутри галактического кластера. По словам ученых, черные дыры в активных галактиках ведут себя как космические термостаты. Горячий газ внутри кластера остывает и устремляется к центру притяжения. Затем черная дыра поглощает газ, выделяя при этом процессе энергию, которая снова действует на межгалактический газ. Газ нагревается и движется назад от центра кластера. Затем весь процесс повторяется.
Ответить С цитатой В цитатник
Instara   обратиться по имени Черная дыра может быть и “белой”. Вторник, 25 Июня 2013 г. 03:15 (ссылка)

Белая дыра — антипод черной, она ничего не пускает внутрь, а может, даже выталкивает вещество наружу

Долгое время черные дыры считались воплощением тьмы, объектами, которые в вакууме, в отсутствии поглощения материи, ничего не излучают. Однако в 1974 году известный английский теоретик Стивен Хокинг показал, что черным дырам можно приписать температуру, и, следовательно, они должны излучать.
Согласно представлениям квантовой механики, вакуум – не пустота, а некая «пена пространства-времени», мешанина из виртуалных (ненаблюдаемых в нашем мире) частиц. Однако квантовые флуктуации энергии способны «выбросить» из вакуума пару частица-античастица. Например, при столкновении двух трех гамма-квантов как бы из ничего возникнут электрон и позитрон. Это и аналогичные явления неоднократно наблюдались в лабораториях.

Именно квантовые флуктуации определяют процессы излучения черных дыр. Если пара частиц, обладающих энергиями E и E (полная энергия пары равна нулю), возникает в окрестности сферы Шварцшильда, дальнейшая судьба частиц будет различной. Они могут аннигилировать почти сразу же или вместе уйти под горизонт событий. При этом состояние черной дыры не изменится. Но если под горизонт уйдет только одна частица, наблюдатель зарегистрирует другую, и ему будет казаться, что ее породила черная дыра. При этом черная дыра, поглотившая частицу с энергией E, уменьшит свою энергию, а с энергией E – увеличит.

р3 (228x175, 28Kb)
В мощном поле тяготения черной дыры происходит рождение пар частица-античастица. Поглощение частиц с отрицательной энергией приводит к уменьшению полной энергии черной дыры – ее испарению.

Хокинг подсчитал скорости, с которыми идут все эти процессы, и пришел к выводу: вероятность поглощения частиц с отрицательной энергией выше. Это значит, что черная дыра теряет энергию и массу – испаряется. Кроме того она излучает как абсолютно черное тело с температурой T = 6•10 8 M๏/M кельвинов, где M๏ – масса Солнца (2•1033 г), M – масса черной дыры. Эта несложная зависимость показывает, что температура черной дыры с массой, в шесть раз превышающей солнечную, равна одной стомиллионной доле градуса. Ясно, что столь холодное тело практически ничего не излучает, и все приведенные выше рассуждения остаются в силе. Иное дело – мини-дыры. Легко увидеть, что при массе 1014-1030 граммов они оказываются нагретыми до десятков тысяч градусов и раскалены добела! Следует, однако, сразу отметить, что противоречий со свойствами черных дыр здесь нет: это излучение испускается слоем над сферой Шварцшильда, а не под ней.

Белая дыра порождает материю, которая затем выбрасывается в космос

Итак, черная дыра, которая казалась навеки застывшим объектом, рано или поздно исчезает, испарившись. Причем по мере того, как она «худеет», темп испарения нарастает, но все равно идет чрезвычайно долго. Подсчитано, что мини-дыры массой 1014 граммов, возникшие сразу после Большого взрыва 10-15 миллиардов лет назад, к нашему времени должны испариться полностью. На последнем этапе жизни их температура достигает колоссальной величины, поэтому продуктами испарения должны быть частицы чрезвычайно высокой энергии. Происхождение частиц аномально высокой энергии – еще одна важная и интересная проблема, которая может быть вплотную связана с не менее захватывающими вопросами физики черных дыр.

Ответить С цитатой В цитатник
Instara   обратиться по имени Как устроена Вселенная-2. Черные дыры Вторник, 25 Июня 2013 г. 03:20 (ссылка)
Как устроена Вселенная
How the Universe works
Discovery. 2010
Фильм 2. Черные дыры (Blaсk Holes)
Черные дыры - самые мощные машины уничтожения во Вселенной и самая большая ее загадка. Современная астрономия доказывает, что они могут влиять на все, что мы видим.


Ответить С цитатой В цитатник
Instara   обратиться по имени Дыра во времени. Вторник, 25 Июня 2013 г. 03:24 (ссылка)
Как уже говорилось, теория тяготения предсказывает, что время течет тем медленней, чем ближе часы находятся к гравитационному радиусу. Это означает, что, какие бы процессы ни протекали в сильном поле тяготения, далекий от черной дыры наблюдатель увидит их в замедленном темпе. Так, для него колебания в атомах, излучающих свет в сильном поле тяготения, происходят замедленно, и фотоны от этих атомов приходят к нему “покрасневшими”, с уменьшенной частотой. Это явление носит название гравитационного красного смещения (оно послужило основой для одной из проверок правильности теории Эйнштейна). Для нас сейчас важен тот факт, что замедление времени и покраснение света тем больше, чем ближе область излучения располагается к горизонту событий. Там время замедляет свой бег, и на самой границе черной дыры оно как бы замирает для далекого наблюдателя. Этот наблюдатель, следя, например, за камнем, падающим к черной дыре, видит, как у самой сферы Шварцшильда он постепенно тормозится и приблизится к границе черной дыры лишь за бесконечно долгое время. Аналогичную картину увидит далекий наблюдатель при самом процессе образования черной дыры — когда под действием тяготения само вещество звезды падает, устремляется к ее центру. Для него поверхность звезды лишь за бесконечно долгое время приближается к сфере Шварцшильда, как бы застывая на гравитационном радиусе. Поэтому раньше черные дыры называли еще застывшими звездами. Но это застывание вовсе не значит, что наблюдатель будет вечно созерцать застывшую поверхность звезды на гравитационном радиусе. Вспомним о замедлении времени, о покраснении света, выходящего из сильного гравитационного поля. С приближением поверхности звезды к гравитационному радиусу наблюдатель видит все более и более покрасневший свет звезды, несмотря на то, что на самой звезде продолжают рождаться обычные фотоны. Менее энергичные, покрасневшие, фотоны к тому же приходят к наблюдателю все реже и реже. Интенсивность света падает.

К факту покраснения света из-за замедления времени, обусловленного сильным полем тяготения, прибавляется еще покраснение света из-за эффекта Доплера. Действительно, ведь поверхность сжимающейся звезды неуклонно удаляется от наблюдателя. А известно, что свет от удаляющегося источника воспринимается также покрасневшим.
Итак, совместное действие эффекта Доплера и замедления времени в сильном поле тяготения ведет к тому, что с приближением поверхности звезды к сфере Шварцшильда далекий наблюдатель видит свет все более покрасневшим и все меньшей интенсивности — звезда становится невидимой. Ее яркость стремится к нулю, и ни в какие телескопы ее нельзя уже обнаружить При этом потухание происходит для далекого наблюдателя практически мгновенно. Так, звезда с массой Солнца после того, как она, сожмется до размеров удвоенного гравитационного радиуса, потухнет для внешнего наблюдателя за стотысячную долю секунды.
Нельзя обнаружить поверхность застывшей у гравитационного радиуса звезды и радиолокационным методом. Радиосигналы будут бесконечно долго двигаться к гравитационному радиусу и никогда не вернутся к пославшему их наблюдателю. Звезда для внешнего наблюдателя полностью “исчезает”, и остается только ее гравитационное поле. Внешний наблюдатель никогда не увидит то, что произойдет со звездой после ее сжатия до размеров меньше гравитационного радиуса. Когда же она станет меньше гравитационного радиуса? После бесконечно долгого времени!
Вот тут-то и проявляется одна из самых удивительных и важных истин, открытых теорией относительности, — относительность временных промежутков, зависимость их от состояния движения наблюдателя. Вспомним, что уже в специальной теории относительности, где роль гравитационных полей не учитывается, один и тот же процесс с точки зрения разных наблюдателей имеет различную длительность: часы на быстро летящей ракете идут с точки зрения наземного наблюдателя медленнее, чем его собственные. Это явление проверено непосредственным физическим экспериментом. В случае же падения к черной дыре относительность длительности процесса проявляется в совершенно удивительном виде. Представим себе ряд наблюдателей, расположенных вдоль линии, продолжающей радиус черной дыры, и неподвижных по отношению к ней. Например, они могут находиться на ракетах, двигатели которых работают, не давая наблюдателям падать на черную дыру. Далее, представим себе еще одного наблюдателя на ракете с выключенным двигателем, который свободно падает к черной дыре. По мере падения он проносится мимо неподвижных наблюдателей с всевозрастающей скоростью. При падении к черной дыре с большого расстояния эта скорость равняется второй космической скорости. Скорость падения стремится к световой, когда падающее тело приближается к гравитационному радиусу. Ясно, что темп течения времени на свободно падающей ракете с ростом скорости уменьшается. Это уменьшение настолько значительное, что с точки зрения наблюдателя с любой неподвижной ракеты для того, чтобы падающий успел достичь сферы Шварцшильда, проходит бесконечный промежуток времени, а по часам падающего наблюдателя это время соответствует конечному промежутку. Таким образом, бесконечное время одного наблюдателя на неподвижной ракете равно конечному промежутку времени другого (на падающей ракете), причем промежутку очень малому, — так, мы видели, для массы Солнца это всего стотысячная доля секунды. Что может быть более наглядным примером относительности временной протяженности?
Итак, по часам, расположенным на сжимающейся звезде, она за конечное время сжимается до размеров гравитационного радиуса и будет продолжать сжиматься дальше, к еще меньшим размерам. Но далекий внешний наблюдатель, этих последних этапов эволюции, как мы помним, никогда не увидит.
Ответить С цитатой В цитатник
Instara   обратиться по имени Небесная механика черных дыр. Вторник, 25 Июня 2013 г. 03:27 (ссылка)

Будущая черная дыра.

Согласно ньютоновской теории тяготения любое тело в гравитационном поле звезды движется либо по разомкнутым кривым — гиперболе или параболе, — либо по замкнутой кривой — эллипсу (в зависимости от того, велика или мала начальная скорость движения). У черней дыры на больших от нее расстояниях поле тяготения слабо, и здесь все явления с большой точностью описываются теорией Ньютона, то есть законы ньютоновской небесной механики здесь справедливы. Однако с приближением к черной дыре они нарушаются все больше и больше. По теории Ньютона, если скорость тела меньше второй космической, то оно движется по эллипсу около центрального тела — тяготеющего центра. У эллипса есть ближайшая к тяготеющему центру точка (периастр) и наиболее удаленная (апоастр). По теории Эйнштейна, в случае движения тела со скоростью, меньшей второй космической, траектория его также имеет периастр и апоастр, но она уже не эллипс; оно движется по незамкнутой орбите, то приближаясь к черной дыре, то снова удаляясь от нее. Траектория вся целиком лежит в одной плоскости, но вблизи черной дыры она может выглядеть весьма причудливо, как, например, наказано на рисунке 1. Если же она лежит достаточно далеко, то вид ее представляет собой медленно поворачивающийся в пространстве эллипс. Очень интересно рассмотреть простейшее периодическое движение тела в поле черной дыры по круговой орбите. По теории Ньютона, движение по кругу возможно на любом расстоянии от тяготеющего центра. Из теории Эйнштейна следует, что это не так. Чем ближе к тяготеющему центру, тем больше скорость движущегося по окружности тела. На окружности, удаленной на полтора гравитационных радиуса, скорость обращающегося тела достигает световой. На еще более близкой к черной дыре окружности движение его вообще невозможно, ибо для этого ему потребовалась бы скорость больше скорости света. Но, оказывается, в реальной ситуации движение по окружности вокруг черной дыры невозможно и на больших расстояниях, начиная с трех гравитационных радиусов, когда скорость движения составляет всего половину скорости света. На расстояниях меньше трех гравитационных радиусов движение по окружности неустойчиво. Малейшее возмущение, сколько угодно малый толчок заставят вращающееся тело уйти с орбиты и либо упасть в черную дыру, либо улететь в пространство (ничего похожего не предусматривает ньютоновская “Небесная механика”). Но, пожалуй, самое интересное и необычное в новой небесной механике — это возможность гравитационного захвата черной дырой тел, прилетающих из космоса. Напомним, что в ньютоновской механике всякое тело, прилетающее к тяготеющей массе из космоса, описывает вокруг нее параболу или гиперболу и (если не врежется в поверхность тяготеющей массы) снова улетает в космос — гравитационный захват невозможен. Иначе обстоит дело в поле тяготения черной дыры. Конечно, если прилетающее тело движется на большом расстоянии от черной дыры (на расстоянии десятков гравитационных радиусов и больше), там, где поле тяготения слабо и справедливы законы механики Ньютона, то оно движется почти точно по параболе или гиперболе. Но если оно пролетает достаточно близко от дыры, то его орбита совсем не похожа на гиперболу или параболу. В случае, если оно вдали от черной дыры имеет скорость много меньше световой и его орбита подходит близко к окружности с радиусом, равным двум гравитационным радиусам, то оно обернется вокруг черной дыры несколько раз, прежде чем снова улетит в космос (рисунок 2). Наконец, если вращающееся тело подойдет вплотную к указанной окружности двух гравитационных радиусов, то его орбита будет на эту окружность навиваться; тело окажется гравитационно захваченным черной дырой и никогда снова не улетит в космос (рисунок 3). Если тело подойдет еще ближе к черной дыре, оно упадет в черную дыру и также окажется гравитационно захваченным. Прежде чем перейти к другим физическим явлениям в поле тяготения черной дыры, сделаем еще одно замечание, касающееся второй космической скорости. Мы уже говорили раньше, что для второй космической скорости справедлива формула теории Ньютона и тело, обладающее такой и большей скоростью, навсегда улетает от черной дыры в космос.

р4 (384x385, 3Kb)
Однако, если тело движется к черной дыре непосредственно вдоль радиуса, то, какую бы скорость оно ни имело, оно врежется в черную дыру и не улетит в космос. Более того, нам теперь известно, что если тело будет двигаться хоть и не прямо по радиусу к черной дыре, но орбита его пройдет на достаточно близком расстоянии от черной дыры, то оно будет гравитационно захвачено. Следовательно, чтобы вырваться из окрестностей черной-дыры, мало иметь скорость больше второй космической, надо еще, чтобы направление этой скорости составляло с направлением на черную дыру угол больше некоторого критического значения. Если угол будет меньше, тело гравитационно захватится, если больше (и скорость равна второй космической), то улетит в космос. Значение этого критического угла зависит от расстояния до черной дыры. Чем дальше от нее, тем меньше критический угол. На расстоянии нескольких гравитационных радиусов надо уже точно “прицелиться” в черную дыру, чтобы быть ею захваченной.
Ответить С цитатой В цитатник
Instara   обратиться по имени Вторник, 25 Июня 2013 г. 03:31 (ссылка)

Когда две галактики сталкиваются, черные дыры в их ядрах сходятся в центре результирующей большей галактики.

Черные дыры слишком далеки от нас, поэтому мы не можем со 100% точностью говорить об их свойствах и наблюдаемых возле них эффектах. Теория относительности позволяет предсказать некоторые свойства этих удивительных объектов связанные с пространством-временем, а насколько верны эти предположения нам еще предстоит узнать в будущем.

Итак, что мы знаем о них:
1) Они обладают тремя важными характеристиками: масса, заряд, вращательный импульс.
2) Обнаруживаются тремя способами:
а) По рентгеновскому излучению падающего вещества.
б) По воздействию на окружающие объекты.
в) По сильному гравитационному излучению.
3) Не являются вечными.
4) Могут являться источниками энергии (Суперрадиация).
5) Имеют главную роль в активных галактических ядрах.
6) Осуществляют движение газа в галактических кластерах.
7) Сверхмассивные черные дыры образуют вокруг себя галактики и более крупные скопления материи.

Существует еще множество различных теорий по поводу поведения черных дыр в тех или иных условиях. Пока еще гравитационное оборудование не принесло революцию в астрономический мир, над черными дырами трудятся сотни теоретиков и математиков. Например, была разработана теория, согласно которой в случае ассиметричного коллапса звезды, ассимметричность уберется за счет излучения гравитационных волн. Также были разработаны теории о переходе в будующее и в прошлое, через “кротовую нору”, только для этого все равно телу пришлось бы пройти через сингулярность, что означало бы разрушение материи. Теория гравитации Эйнштейна не учитывает результатов другой великой физической теории XX века - квантовой механики. Не исключено, что вблизи центра черной дыры законы общей теории относительности уступают место законам объединенной теории - квантовой гравитации или попросту “Теории Всего”. И черная дыра - не символ отчаяния и невозвратимости, а объект, раскрытие тайн которого будет означать крупный, может быть, даже решающий шаг к полному постижению сути пространства и времени.
Ответить С цитатой В цитатник
Комментировать К дневнику Страницы: [1] [Новые]
 

Добавить комментарий:
Текст комментария: смайлики

Проверка орфографии: (найти ошибки)

Прикрепить картинку:

 Переводить URL в ссылку
 Подписаться на комментарии
 Подписать картинку