Случайны выбор дневника Раскрыть/свернуть полный список возможностей


Найдено 3 сообщений
Cообщения с меткой

вэпп-2000 - Самое интересное в блогах

Следующие 30  »
Rewiever

Прецизионные результаты в мюонной физике

Пятница, 07 Июня 2025 г. 00:01 (ссылка)


Фермилаб уверенно завершил эксперимент по проверке Стандартной модели,


точку в котором всё же поставят исследования в Новосибирске


 


3 июня 2025 года международная коллаборация Muon g-2 сообщила итоговую величину аномального магнитного момента мюона (АМММ), измеренную в эксперименте, который в течение последнего десятилетия проводился в Фермилаб (США). Была достигнута рекордная в мире точность 127 миллиардных долей, или около 0.000013%.




3n25_Muong2s (640x455, 353Kb)


 


Неделю назад, 27 мая 2025 года, коллаборация  Muon g-2 Theory Initiative опубликовала актуальный расчет величины АМММ, предсказанной СМ. Точность теоретического расчета пока что уступает эксперименту. Результаты измерения и расчета прекрасно согласуются между собой, что означает, что СМ прошла проверку на новом уровне точности. Институт ядерной физики им. Г.И. Будкера СО РАН (ИЯФ СО РАН) входит в обе коллаборации. В значительной степени именно прецизионные результаты, получаемые на коллайдере ВЭПП-2000, определяют точность теоретического предсказания АМММ. В ближайшие несколько лет новосибирские физики планируют масштабную модернизацию коллайдера ВЭПП-2000, которая позволит повысить точность предсказания АМММ в несколько раз и сделает её сопоставимой с точностью нового измерения Фермилаб.АМММ, который измерялся в эксперименте Muon g-2, это дополнительный вклад в величину магнитного момента мюона, который возникает из-за того, что мюон взаимодействует с виртуальными частицами, которые все время рождаются и исчезают даже в пустом пространстве, в вакууме. 


Уникальность АММ мюона состоит в том, что он очень чувствителен к вкладу всех частиц и сил, которые существуют в природе – даже тех, которые не описываются СМ. АМММ есть у любой заряженной частицы, но наиболее интересно его изучать именно у мюона, потому что по меркам микромира мюон живет относительно долго (целых 2 микросекунды), что позволяет провести измерение с очень высокой точностью. Еще одно преимущество мюона в том, что он более чем в 200 раз тяжелее электрона, и его АММ гораздо чувствительней, примерно в 43000 раз, к вкладу тяжелых частиц – а именно такие новые частицы предсказывают многие модели, расширяющие СМ. Под расширениями СМ физики подразумевают более общие теории, которые предсказывают и описывают явления за рамками существующей теории микромира, иногда их также называют теориями Новой физики.


Эксперимент Muon g-2 стартовал в 2017 г. Он стал продолжением предыдущего измерения АМММ, который проводился в Брукхейвенской лаборатории (БНЛ, США) в конце 90-х – начале 2000-х. Часть оборудования, в том числе мюонное накопительное кольцо, было перевезено из БНЛ в Фермилаб. Более десяти лет специалистам потребовалось, чтобы спланировать и подготовить эксперимент. В 2017 г. начался набор данных, который продолжался в течение шести лет. За этот период коллаборация два раза объявляла результаты измерения АМММ (в 2021 г. и в 2023 г.), которые были основаны на обработке части набранных данных. Уже тогда эксперимент был более чем в два раза точнее результата БНЛ. В 2025 г. Фермилаб поставил финальную точку – результат, объявленный 3 июня, получен на основе полного массива данных, а эксперимент считается завершенным.


«Это очень волнующий момент, мы не только достигли своих целей, но и превзошли их, что не так-то просто для таких точных измерений», – прокомментировал руководитель коллаборации Muon g-2, физик Аргоннской национальной лаборатории Питер Винтер в официальном пресс-релизе Фермилаб.


 


«Muon g-2 очень успешный эксперимент по многим параметрам, – добавил заместитель директора ИЯФ СО РАН по научной работе, заведующий кафедрой физики элементарных частиц НГУ член-корреспондент РАН Иван Логашенко. – Чтобы настолько увеличить точность, потребовалось набрать в 20 раз больше данных, чем в эксперименте Брукхейвенской лаборатории, а это само по себе является огромным достижением. Удалось снизить все неточности эксперимента на беспрецедентном уровне. Над экспериментом трудилась международная коллаборация из 200 физиков многих стран мира, в том числе из России, из нашего Института. На данный момент – это самое точное измерение АМММ. В ближайшие 10 лет на ускорительном комплексе J-PARC (Япония) планируют сделать свое измерение АМММ и, возможно, побить рекорд Фермилаб, но это еще очень далекое будущее».


ИЯФ СО РАН принимает участие, как в завершившемся эксперименте Muon g-2, так и в работе коллаборации Muon g-2 Theory Initiative.


...


«Суть того способа, который позволяет провести всеобъемлющую проверку СМ, состоит не только в измерении АМММ, но и в сравнении получившегося значения с той величиной АМММ, которую предсказывает СМ, – пояснил Иван Логашенко. – Совпадение этих чисел означает, что теория верна и что мы всё в ней понимаем на том уровне точности, которого достигли. Если же разница между ними большая, это говорит об обратном, что мы видим явления за рамками СМ».


В 2023 г. Muon g-2 представил результат измерения АМММ, основанном приблизительно на 1/3 всех данных, набранных в эксперименте. На тот момент предсказание СМ было основано на расчете, проведенным коллаборацией Muon g-2 Theory Initiative и опубликованным в 2020 г. Разница между двумя этими значениями тогда была довольно большой – почти пять стандартных отклонений, или пять сигм. Этот факт в физическом сообществе обсуждался, как потенциальное наблюдение Новой физики, то есть физики за рамками Стандартной модели. Точность измерения АМММ составила 0.000013%, что в четыре раза улучшает точность измерения БНЛ 2001 г.


 


Полный текст и иллюстрации: сайт ИЯФ СО РАН


 
Метки:   Комментарии (0)КомментироватьВ цитатник или сообщество
Rewiever

Долгий путь к уточнению Стандартной модели

Вторник, 18 Апреля 2023 г. 22:03 (ссылка)


Новый результат новосибирских учёных в области поиска «Новой физики»



Результаты исследований новосибирских физиков показывают, что вероятность рождения пары пионов в результате столкновения пучков электронов и позитронов выше, чем данные, которые учёные в мире получали последние 60 лет. Эти новые знания связывают с существованием т. н. «Новой физики».



2000vepp_1srs (327x222, 66Kb)О полученных результатах журналистам рассказали во вторник на конференции, прошедшей в Институте ядерной физики им. Г.И. Будкера СО РАН. С 2013 по 2020 г. ученые ИЯФ СО РАН проводили эксперименты с помощью детектора КМД-3 на коллайдере ВЭПП-2000 ("встречные электрон-позитронные пучки с энергией 2000 МэВ", сооружен в начале 2000-х, модернизирован в середине "десятых"). Специалисты измеряли вероятность рождения пары пионов в результате столкновения пучков электронов и позитронов. Эту вероятность используют для расчета вклада в аномальный магнитный момент мюона (АМММ), отражающий силу взаимодействия частицы с магнитным полем. АМММ предсказывается Стандартной моделью, но данные, полученные в экспериментах в течение последних 60 лет, отличаются от предсказанных. Это значит, что могут существовать еще не известные частицы и силы ― «Новая физика».



Каждая заряженная элементарная частица является и маленьким магнитом, проворачивающимся в магнитном поле, а по углу его поворота измеряется величина АММ. Мюоны хороши для исследований тем, что физики умеют получать эти частицы в больших количествах, а кроме того, они живут относительно долго ― 2 микросекунды. Мюон в 200 раз тяжелее электрона, а его АММ чувствительней к вкладу тяжелых частиц в 40000 раз.


«Поэтому именно для мюона интереснее всего сравнить величину АММ, измеренную в эксперименте, с предсказанием Стандартной модели. Если мы увидим отличие, то это указывает на «Новую физику» ― что существуют какие-то силы и частицы, которые вносят свой вклад в АММ и которые мы не учитываем в Стандартной модели», ― сказал заместитель директора ИЯФ СО РАН по научной работе доктор физико-математических наук И.Б. Логашенко.


Результаты измерений ученых ИЯФ СО РАН, получение которых вместе с постройкой коллайдера заняли 20 лет, значительно отличаются от тех, что раньше получали в мире. Разница между предсказанным Стандартной моделью значением АМММ и полученным в эксперименте сократилась примерно в четыре раза.


2000vepp_2srs (160x146, 22Kb)«Мы не понимаем, почему у нас получился результат, отличающийся от всех предыдущих. Мы уверены в нашем результате, было сделано огромное количество проверок. По моему убеждению, анализ данных, который мы провели, был наиболее тщательный среди всех, которые были сделаны раньше. Это не удивительно ― мы учились на опыте других в том числе. Но и прошлые измерения проводили очень серьезные научные группы. Предстоит еще понять, что отличает наши измерения от всех остальных», ― рассказал И.Б. Логашенко на пресс-конференции.


Ученый добавил, что сейчас очень важно, чтобы измерения российских ученых подтвердили в других институтах. Для верификации результата требуются независимые эксперименты. При этом даже подтверждение измерений ученых ИЯФ СО РАН будет означать не то, что «Новой физики» нет, а скорее то, что она должна проявляться при больших энергиях. «Закрывает ли наш результат возможность существования «Новой физики»? Конечно, нет. Вопрос ― в точности… Чем тяжелее частицы, которые мы еще не открыли, тем они дают меньший вклад в аномальный магнитный момент мюона. Поэтому наша разрешающая способность ― то, до каких энергий мы увидим вклад гипотетических частиц, ― зависит от точности измерений. С той точностью, которую мы измерили ― да, закрывает. Мы можем сказать, что не может быть частиц легче определенной массы. Но частицы с большой массой могут быть», ― сказал И.Б. Логашенко.


 


Теперь ученые ждут независимого подтверждения измерений. Кроме того, уточняющие данные ждут со второго детектора коллайдера ВЭПП-2000 - СНД. В течение следующих двух лет ученые планируют получить новые данные, чтобы подтвердить существующие. Еще лет пять-шесть займет модернизация детектора, после чего опять начнется очередной набор информации. Тогда ученые планируют увеличить точность измерений в два-три раза, но на это уйдет ориентировочно 10 лет.


Опубликовано на портале «Научная Россия» 18.04.2023 


Метки:   Комментарии (0)КомментироватьВ цитатник или сообщество

Следующие 30  »

<вэпп-2000 - Самое интересное в блогах

Страницы: [1] 2 3 ..
.. 10

LiveInternet.Ru Ссылки: на главную|почта|знакомства|одноклассники|фото|открытки|тесты|чат
О проекте: помощь|контакты|разместить рекламу|версия для pda