-Поиск по дневнику

Поиск сообщений в rss_desert_man

 -Подписка по e-mail

 

 -Статистика

Статистика LiveInternet.ru: показано количество хитов и посетителей
Создан: 10.09.2012
Записей:
Комментариев:
Написано: 61


Почемучкам. Почему нельзя делить на ноль?

Пятница, 03 Октября 2014 г. 14:52 + в цитатник

После общения со своими племянниками, я понимаю насколько трудно сейгодня работать воспитателям в детском саду и учителям в школе. Эти бесконечные каверзные детские вопросы ставят в тупик и заставляют искать ответы в интернет. Детская эмансипация в последние несколько лет резко шагнула вперед. Поэтому работникам младших детских заведений нужно постоянно совершенствоваться. Как-то решил проведать свою учительницу, которая сейчас работает в детском саду. Оказалось, что ее отправили на семинар для воспитателей. Меня несколько удивило, что учительницу с большим стажем работы с детьми отправили на семинар, а потом понял, что работать с такими шустрыми детками очень сложно и семинар для воспитателей не помешает. Вот вам один из вопросов моего племянника: почему нельзя делить на ноль? Я точно помню из программы по математике, что ельзя и думал, что это аксиома. Сам ответить я не смог, пришлось ответ искать в интернете.

1412333492_17 (640x480, 63Kb)

Всё дело в том, что четыре действия арифметики — сложение, вычитание, умножение и деление — на самом деле неравноправны. Математики признают полноценными только два из них — сложение и умножение. Эти операции и их свойства включаются в само определение понятия числа. Все остальные действия строятся тем или иным образом из этих двух.

Рассмотрим, например, вычитание. Что значит 5 – 3 ? Школьник ответит на это просто: надо взять пять предметов, отнять (убрать) три из них и посмотреть, сколько останется. Но вот математики смотрят на эту задачу совсем по-другому. Нет никакого вычитания, есть только сложение. Поэтому запись 5 – 3 означает такое число, которое при сложении с числом 3 даст число 5 . То есть 5 – 3 — это просто сокращенная запись уравнения: x + 3 = 5 . В этом уравнении нет никакого вычитания. Есть только задача — найти подходящее число.

Точно так же обстоит дело с умножением и делением. Запись 8 : 4 можно понимать как результат разделения восьми предметов по четырем равным кучкам. Но в действительности это просто сокращенная форма записи уравнения 4 · x = 8 .

Вот тут-то и становится ясно, почему нельзя (а точнее невозможно) делить на ноль. Запись 5 : 0 — это сокращение от 0 · x = 5 . То есть это задание найти такое число, которое при умножении на 0 даст 5 . Но мы знаем, что при умножении на 0 всегда получается 0 . Это неотъемлемое свойство нуля, строго говоря, часть его определения.

Такого числа, которое при умножении на 0 даст что-то кроме нуля, просто не существует. То есть наша задача не имеет решения. А значит, записи 5 : 0 не соответствует никакого конкретного числа, и она просто ничего не обозначает и потому не имеет смысла. Бессмысленность этой записи кратко выражают фразой "На ноль делить нельзя".

Самые внимательные читатели в этом месте непременно спросят: а можно ли ноль делить на ноль? В самом деле, ведь уравнение 0 · x = 0 благополучно решается. Например, можно взять x = 0 , и тогда получаем 0 · 0 = 0 . Выходит, 0 : 0=0 ? Но не будем спешить. Попробуем взять x = 1 . Получим 0 · 1 = 0 . Правильно? Значит, 0 : 0 = 1 ?

Но ведь так можно взять любое число и получить 0 : 0 = 5 , 0 : 0 = 317 и т. д. И, если подходит любое число, то у нас нет никаких оснований остановить свой выбор на каком-то одном из них. То есть мы не можем сказать, какому числу соответствует запись 0 : 0 . А раз так, то мы вынуждены признать, что эта запись тоже не имеет смысла. Выходит, что на ноль нельзя делить даже ноль.

Вот такая особенность есть у операции деления. А точнее — у операции умножения и связанного с ней числа ноль.

http://desert-man.org.ua/post338859237/

Метки:  

 

Добавить комментарий:
Текст комментария: смайлики

Проверка орфографии: (найти ошибки)

Прикрепить картинку:

 Переводить URL в ссылку
 Подписаться на комментарии
 Подписать картинку