Случайны выбор дневника Раскрыть/свернуть полный список возможностей


Найдено 409 сообщений
Cообщения с меткой

транзистор - Самое интересное в блогах

Следующие 30  »
Wild-Mowgli

Why making chips is so hard

Среда, 10 Мая 2023 г. 13:40 (ссылка)






 

Метки:   Комментарии (0)КомментироватьВ цитатник или сообщество
emlando424

Без заголовка

Суббота, 14 Января 2023 г. 21:37 (ссылка)

Транзистор прием цена Новокуйбышевск
подробнее тут - https://sarmetal.ru/
Транзистор прием цена Новокуйбышевск

ООО Номинал
Саратов ул.Чернышевского д.203. 1 этаж

8 (8452) 777-884

+7 927 277-78-84

Энгельс ул.Рабочая, д.60

Телефон: +7 937 266-19-99

Самара ул.Победы, д.10

Телефон: +7 (909) 370-98-98
https://sarmetal.ru/

Метки:   Комментарии (0)КомментироватьВ цитатник или сообщество
skyrquihil

Без заголовка

Суббота, 14 Января 2023 г. 20:03 (ссылка)

Транзистор прием цена Балаково
подробнее тут - https://sarmetal.ru/
Транзистор прием цена Балаково

ООО Номинал
Саратов ул.Чернышевского д.203. 1 этаж

8 (8452) 777-884

+7 927 277-78-84

Энгельс ул.Рабочая, д.60

Телефон: +7 937 266-19-99

Самара ул.Победы, д.10

Телефон: +7 (909) 370-98-98
https://sarmetal.ru/

Метки:   Комментарии (0)КомментироватьВ цитатник или сообщество
drifcoucuschoi70

Без заголовка

Суббота, 14 Января 2023 г. 17:30 (ссылка)

Транзистор прием цена Балаково - https://vk.com/wall-210317537_2301

Метки:   Комментарии (0)КомментироватьВ цитатник или сообщество
blowulvulle87

Без заголовка

Суббота, 14 Января 2023 г. 15:37 (ссылка)

Транзистор прием цена Балаково - https://vk.com/wall-210317537_2301

Метки:   Комментарии (0)КомментироватьВ цитатник или сообщество
nualcdisensdass85

Без заголовка

Суббота, 14 Января 2023 г. 14:01 (ссылка)

Транзистор прием цена Балаково - https://vk.com/wall-210317537_2301

Метки:   Комментарии (0)КомментироватьВ цитатник или сообщество
fiedecola30

Без заголовка

Суббота, 14 Января 2023 г. 13:25 (ссылка)

Транзистор прием цена Новокуйбышевск - https://vk.com/wall-210317537_2376

Метки:   Комментарии (0)КомментироватьВ цитатник или сообщество
gatagdray

Без заголовка

Суббота, 14 Января 2023 г. 11:19 (ссылка)

Транзистор прием цена Новокуйбышевск - https://vk.com/wall-210317537_2376

Метки:   Комментарии (0)КомментироватьВ цитатник или сообщество
legojuckrir76

Без заголовка

Суббота, 14 Января 2023 г. 11:11 (ссылка)

Транзистор прием цена Новокуйбышевск - https://vk.com/wall-210317537_2376

Метки:   Комментарии (0)КомментироватьВ цитатник или сообщество
sietalabgio93

Без заголовка

Суббота, 14 Января 2023 г. 10:43 (ссылка)

Транзистор прием цена Новокуйбышевск - https://vk.com/wall-210317537_2376

Метки:   Комментарии (0)КомментироватьВ цитатник или сообщество
xulubz

Без заголовка

Суббота, 14 Января 2023 г. 10:17 (ссылка)

Транзистор прием цена Новокуйбышевск - https://vk.com/wall-210317537_2376

Метки:   Комментарии (0)КомментироватьВ цитатник или сообщество
kdbed

Без заголовка

Суббота, 14 Января 2023 г. 04:16 (ссылка)

Транзистор прием цена Балаково - https://vk.com/wall-210317537_2301

Метки:   Комментарии (0)КомментироватьВ цитатник или сообщество
rss_habr

Натравим транзисторы на законодательство

Понедельник, 12 Сентября 2022 г. 05:28 (ссылка)

В догонку к посту "Крякнул софт, суши сухари", где в комментариях люди обсуждают юридические тонкости. Добавлю свои мысли. Транзисторы это лангольеры Стивена Кинга. Они пожирают все на своем пути. Они сожрали видеомагнитофоны, фотоаппараты, и другую аналоговую технику. Силовые транзисторы электродвигателей начинают пожирать двигатели внутреннего сгорания. Цифровая электроника или миниатюризирует устройства, или уничтожает их как класс.

Читать далее

https://habr.com/ru/post/687650/?utm_source=habrahabr&utm_medium=rss&utm_campaign=687650

Метки:   Комментарии (0)КомментироватьВ цитатник или сообщество
ЦифровойМир

Toshiba наращивает производство мощных полупроводниковых приборов

Воскресенье, 20 Марта 2022 г. 09:59 (ссылка)

В настоящее время растет спрос на мощные полупроводниковые приборы для управления/снижения энергопотребления во всех видах электронного оборудования и достижения углеродно-нейтральных целей, а также на электрификацию транспортных средств и автоматизацию промышленного оборудования. При этом очень велик спрос на низковольтные МОП полевые транзисторы (MOSFET), и биполярные транзисторы с изолированным затвором (IGBT) и т.д.

3uzb2gj888 (700x426, 172Kb)

В соответствии с этим корпорация Toshiba уже расширила существующие мощности по обработке 200-мм пластин, а также перенесла начало производства мощных приборов на 300-мм пластинах на существующих предприятиях с I половины 2023 фин. г. на II половину 2022 фин. г. Кроме того, Toshiba намерена построить новый завод по обработке 300-мм пластин и производству мощных полупроводниковых приборов в префектуре Исикава. Начало производства 1-й очереди - 2024 фин. г. Она увеличит мощности Toshiba по производству силовых приборов в 2,5 раза по сравнению с 2021 фин. г.

Источник: Техника

Метки:   Комментарии (0)КомментироватьВ цитатник или сообщество
rss_habr

[Перевод] Реверс-инжиниринг старой микросхемы OR/NOR

Вторник, 07 Декабря 2021 г. 18:35 (ссылка)

Не так давно я получил фотографию кристалла загадочной схемы OQ100 [1] от EvilMonkeyDesignz. Я проанализировал её и обнаружил, что это чип логики, реализованный на быстрой ECL (эмиттерно-связанная логика) схеме и датируемый, вероятно, началом 1970-х годов. Чип содержит три логических элемента, два с 2 входами и один с 4 входами. Каждый элемент имеет неинвертированный и инвертированный выходы, работая как вентили OR и NOR. Эта статья резюмирует мои исследования. (Недавно я также проанализировал OQ104, другой чип из этой серии.)





Фотография кристалла микросхемы Philips QC100. Фото предоставленоEvilMonkeyDesignz.
Читать дальше →

https://habr.com/ru/post/594001/?utm_source=habrahabr&utm_medium=rss&utm_campaign=594001

Метки:   Комментарии (0)КомментироватьВ цитатник или сообщество
rss_habr

Что такое Закон Мура и как он работает теперь? Разбор

Среда, 21 Июля 2021 г. 15:11 (ссылка)

Закон Мура гласит: “Количество транзисторов, размещаемых на кристалле интегральной схемы, удваивается каждые 24 месяца”. Вы наверняка слышали про этот закон. А еще вы наверняка слышали, что он больше не работает.







Но, если посмотреть на реальные цифры реальных процессоров, мы увидим, что Закон Мура, удивительно точно работает по сей день, вот уже 50 лет.



Тем не менее, мы с вами на собственном опыте чувствуем, что прогресс замедлился. Несмотря на двукратный прирост транзисторов, мы не видим двукратного прироста производительности. Поэтому сегодня мы разберёмся. Что не так с Законом Мура?





Но самое интересное, что важный перелом произошел на рубеже нулевых и 2010-х. И нужны были новые решения.



С какими сложностями столкнулось человечество и как мы их обошли? И чего нам ждать, когда закон Мура действительно перестанет работать? Читать дальше →

https://habr.com/ru/post/568806/?utm_source=habrahabr&utm_medium=rss&utm_campaign=568806

Комментарии (0)КомментироватьВ цитатник или сообщество
rss_habr

Генератор Ройера на биполярных транзисторах: что это такое и как оно работает

Четверг, 06 Мая 2021 г. 16:32 (ссылка)

Сегодня мы попытаемся понять, что же такое генератор Ройера на примере CCFL конвертера, соберем его прототип, а так же изучим принцип работы.

Читать далее

https://habr.com/ru/post/556148/?utm_source=habrahabr&utm_medium=rss&utm_campaign=556148

Метки:   Комментарии (0)КомментироватьВ цитатник или сообщество
Александр_Божьев

ГЛАВА 2502. 8 апреля 2021 года. 98 ДЕНЬ 2021 ГОДА. Вы очень больны. Но мы вас вылечим. C вас... План "Барбаросса". Александр Божьев.

Четверг, 08 Апреля 2021 г. 15:57 (ссылка)



120 тыщ (700x393, 47Kb)


Бритва, которой брился 40 лет тому назад мой папа, а я продолжаю.
Бритва Харьков (700x511, 161Kb)
Схема Бритвы Харьков (557x501, 58Kb)


Тридцать лет отставания
Кто и как привел советскую микроэлектронику к краху.
Считается, что современной России не дано выйти на передовые позиции в производстве микроэлектроники. По выражению академика Евгения Велихова, «в науке каждая страна находит свою нишу. У США это гаджеты, Россия же всегда была сильна фундаментальными вопросами, энергетикой». Но именно электронные компоненты, микропроцессорная техника сегодня определяют развитие многих других высокотехнологичных отраслей, в том числе энергетики. По силам ли нам сократить отставание на этом направлении и как сейчас решаются подобные проблемы?
Ключевая технология
Производство интегральных микросхем (ИС) – ключевая технология современной промышленности. ИС, образно говоря, – это чудо мысли, фактически целая область науки, рожденная в XX столетии. Микросхема размещается на одном-единственном кристалле – полупроводниковом чипе (чип – англ. chip – тонкая пластинка). В нее входят миллионы полупроводниковых диодов, резисторов, транзисторов, выполненных на микронном уровне, и она может в целом обладать законченным сложным функционалом вплоть до целого микрокомпьютера.
Современные микросхемы разнообразны по конструкции и назначению. К ним предъявляется ряд требований по быстродействию, помехоустойчивости, потребляемой мощности, надежности и другие.
О сложности и миниатюризации ИС говорит такой факт. Сколько, например, транзисторов может поместиться в ширине человеческого волоса 0,08 миллиметра (80 микрон)? Если транзистор размером 14 нанометров (0,014 мкм), то примерно около 5700 транзисторов, которые в микросхеме выглядят величиной с вирус гриппа (0,12 мкм). А при размере семь нанометров – около 1,5 миллиарда транзисторов.
“ Проектирование и отработка техпроцессов микросхем, микроконтроллеров и микропроцессоров требует больших финансовых затрат, на что сегодня способны немногие страны ”
Для того чтобы разработать новую архитектуру чипа, от проекта до производства обычно требуется три – пять лет. Сам цикл производства каждой ИС на одной общей кремниевой (Si) подготовленной подложке толщиной около миллиметра и диаметре 200 миллиметров роботизированными механизмами и многослойными процессами фотолитографии может занимать до трех месяцев при выполнении до 1500 отдельных технологических операций. Вместе с фотолитографией транзисторы создаются, печатаясь слой за слоем на кремнии. Таким образом рождаются сотни идентичных микросхем на одной кремниевой подложке путем формирования различных слоев и рисунков элементов микросхемы. Подложка в конце стадии процесса разрезается на отдельные прямоугольные кристаллы – чипы. Затем золотой нитью распаивают выводы и помещают в их корпуса.
Проектирование и отработка техпроцессов микросхем, микроконтроллеров и микропроцессоров требует больших финансовых затрат, на что сегодня способны немногие страны.
Среди ИС важное место занимает производство микропроцессоров, обеспечивающих обработку данных. Все современные процессоры размещаются на одной микросхеме и представляют сложнейшее устройство с множеством технических характеристик. Если попытаться классифицировать их основные характеристики с точки зрения пользователя, то можно выделить четыре группы: производительность, энергоэффективность, функциональные возможности, стоимость.
Биполярный прорыв
В 1947 году группой ученых США был изобретен первый транзистор, положивший начало миниатюризации электроники. В конце 1958-го и в первой половине 1959-го в полупроводниковой промышленности состоялся прорыв c выпуском биполярного транзистора. Американский ученый Джек Килби изобрел тогда первую интегральную схему, за что был удостоен Нобелевской премии по физике. В 1959 году американская компания Fairchild Semiconductor впервые в мире создала интегральную схему, пригодную для массового производства. Она была одной из ключевых фирм Кремниевой долины в 60-х годах, став одним из ведущих производителей операционных усилителей и других аналоговых интегральных схем.
В 70-х годах минимальный контролируемый размер серийно производимых микросхем составлял 2–8 микрометра, в 80-х – 0,5–2. В 1971 году вышел первый промышленный микропроцессор – Intel 4004. В нем было всего 2250 транзисторов.
В 1975 году Гордон Мур, один из основателей Intel, вывел закон, согласно которому число транзисторов на схеме удваивается каждые два года, однако сегодня ряд специалистов считают, что это правило уже достигло своих пределов.
В 1978-м фирма в микропроцессоре Intel 8086 разместила 29 тысяч транзисторов на кристалле. Легендарный Pentium 4 уже включал 42 миллиона транзисторов. Сегодня эти числа дошли до миллиардов, например в AMD Epyc Rome поместилось 39,54 миллиарда транзисторов.
Первые микросхемы до 90-х выпускались по технологическому процессу 3,5 микрометра. Эти показатели означали непосредственно линейное разрешение литографического оборудования. Так, в среднем внедрение индустрии новых техпроцессов происходило каждые два года, при этом обеспечивалось удвоение количества транзисторов на единицу площади: 45 нанометров (2007), 32 (2009), 22 (2011), производство 14 нанометров начато в 2014 году, но техпроцессы подходят к своему пределу. Например, Intel осваивает 10-нанометровый технологический процесс, фирма AMD использует для некоторых своих графических процессоров GPU уже 7-нанометровый, а TSMC (Тайвань) начала работу над 5-нанометровым техпроцессом (под техпроцессом обычно понимают размер транзисторов).
Продукцию по техпроцессу в три нанометра Samsung планирует выпускать уже в этом году. Если разработчикам действительно удастся приблизиться к таким размерам, то один транзистор можно будет сравнить уже с некоторыми молекулами. При размере два нанометра один транзистор будет состоять всего из 10 атомов, поэтому это тот предел, когда, возможно, потребуется искать применение графена. Графеновые компьютеры, если такие появятся, смогут работать в разы быстрее и мощнее, а экраны будут иметь толщину листа бумаги.
Среди ИС важное место занимает производство микропроцессоров, обеспечивающих обработку данных. Здесь основным направлением повышения производительности компьютеров является переход к многоядерным процессорам и увеличение работы их тактовой частоты с применением программного кода, выполняемых за один такт процессора.
В современных многоядерных процессорах на одном кристалле кремния располагается два и более вычислительных ядер. При этом каждое ядро способно поддерживать вычисление двух и более потоков.
Большинство таких устройств работает по следующей схеме. Например, если в компьютере используется 4-ядерный процессор с тактовой частотой 1,8 ГГц, программа может загрузить работой сразу все четыре ядра, при этом суммарная частота процессора будет составлять 7,2 ГГц. Если запущено сразу несколько программ, каждая из них может использовать часть ядер процессора, что тоже приводит к росту производительности компьютера.
Компания Adapteva представила 64-ядерные микропроцессоры Epiphany IV, которые показывают производительность до 70 гигафлопс (количество операций с плавающей запятой в секунду), при этом потребляя менее одного ватта электроэнергии.
Три компании из десятки производят свои чипы на Тайване. Заводы Intel, кроме США, есть еще в Израиле и Ирландии, а заводы американской Micron – на Тайване, в Сингапуре, Японии. В целом Тайвань, Корея и Япония дают больше половины мирового производства, а если к ним добавить Китай и занимающие большую часть «остального мира» Сингапур и Малайзию, то Юго-Восточная Азия займет три четверти мирового производства.
В Старом Свете, собственно, есть только четыре фабрики: завод Intel в Ирландии, завод STM во французском Кролле, завод Global Foundries в Дрездене (это та самая фабрика AMD, старое оборудование которой купил многострадальный «Ангстрем-Т») и завод Infineon тоже в Дрездене. Еще три фабрики в процессе строительства – STM в окрестностях Милана, Bosch в Дрездене, Infineon в австрийском Филлахе.
TSMC также является лидером по доле рынка контрактного производства полупроводниковой продукции. В финансовом выражении его доля составляла 51,9 процента. На втором месте находилась компания Samsung с 18,8-процентной долей. Тройку лидеров на 2020 год замыкала Intel.
На данный момент массово доступны двух- и четырехъядерные процессоры, в частности Intel Core 2 Duo на 65-нанометровом ядре Conroe (позднее на 45-нм ядре).
Компания ZiiLabs – дочернее предприятие Creative Technology – анонсировала 100-ядерную систему на чипе ZMS-40. Пиковая производительность системы при вычислениях с плавающей запятой составила 50 гигафлопс.
Сегодня для выпуска процессоров по нормам семь нанометров и меньше используется специальное очень дорогое оборудование, которое выпускает только одна компания – нидерландская ASML. Сложность заключается в генерации и свойствах электромагнитного излучения необходимой длины волны, которое проецирует топологию процессора на подложку через маску в процессе фотолитографии.
В установках ASML применяется излучение длиной волны 13,5 нанометра (EUV, сверхжесткий ультрафиолет). Эта длина волны находится уже на границе с рентгеновским излучением. Для экспонирования используются не линзы, а зеркала и вакуум в качестве среды, поскольку для сверхжесткого ультрафиолета линзы воздух и жидкости являются непрозрачными материалами. По некоторым оценкам специалистов, стоимость разработки оборудования для EUV-литографии на сегодня может составлять миллиардные финансовые затраты. Таким образом, следует отметить, что зарубежная электроника постоянно развивается, занимая передовые позиции. А как складывается положение дел у нас?
Советское наследие
Особенно большая потребность в развитии элементной базы электроники в СССР возникла с созданием первых ЭВМ. Первый универсальный программируемый компьютер в Европе был создан командой ученых под руководством Героя Социалистического Труда Сергея Лебедева из Киевского института электротехники. ЭВМ заработала в 1950 году. Она содержала около шести тысяч электровакуумных ламп и потребляла 15 киловатт. Машина могла выполнять около трех тысяч операций в секунду. 25 декабря 1951 года началась ее регулярная эксплуатация. В 1958-м выпустили БСЭМ-2, которая выполняла до 10 тысяч операций в секунду, включала четыре тысячи ламп, пять тысяч диодов, 200 тысяч ферритовых сердечников. Выпущено было 67 единиц. Тройка лучших вычислительных машин – «БЭСМ», «Стрела» и «М-2» встали на службу для решения нужд военной обороны страны, науки и даже народного хозяйства.
Первая в СССР полупроводниковая интегральная микросхема была создана на основе планарной технологии, разработанной в начале 1960 года в НИИ-35 (переименован в НИИ «Пульсар») коллективом, который в дальнейшем был переведен в НИИМЭ («Микрон»). Создание первой отечественной кремниевой интегральной схемы было сконцентрировано на разработке и производстве с военной приемкой серии интегральных кремниевых схем ТС-100 (37 элементов). А первая отечественная микросхема создана в 1961 году в Таганрогском радиотехническом институте (ТРТИ). Параллельно работа по разработке интегральной схемы проводилась в центральном конструкторском бюро при Воронежском заводе полупроводниковых приборов (ныне ОАО «НИИЭТ»). Время требовало системного развития электроники и принятия ряда решений.
В 1962 году решением ЦК КПСС организован Зеленоградский научный центр микроэлектроники. Можно сказать, что 1962-й стал годом рождения микроэлектронной промышленности одновременно в США и СССР. Главным конструктором нашей первой микросхемы стал Юрий Осокин. В 1963 году там же, в Зеленограде основан один из основных производителей интегральных схем в СССР – центр микроэлектроники «Ангстрем».
2 марта 1965 года создано Министерство электронной промышленности СССР (МЭП). Как видим, начало бурного развития электроники и вычислительной техники у нас пришлось на 70–80-е годы прошлого столетия – время противостояния двух систем, возглавляемых США и СССР. В 1974 году на «Ангстреме» (НИИ-336) появился первый советский микропроцессор. В 1979-м – 16-разрядная микроЭВМ, в 1985-м – первый в мире 16-разрядный ПК «Электроника-85». С 1980 года во всех школах был введен предмет информатики и вычислительной техники.
В 70–80-х годах СССР занимал второе место в мире по производству микроэлектроники и даже в начале 90-х поставлял простейшую электронику в Китай. В свое время СССР добился достаточно серьезных достижений в создании компьютерной техники и процессоров «Эльбрус», которые тогда были лучше западных аналогов. Примером этому может служить серия советских суперкомпьютеров «Эльбрус», созданных в Институте точной механики и вычислительной техники (ИТМиВТ) в 70–90-х годах. Это же название носит серия микропроцессоров и систем, произведенных на их основе и выпускаемых сегодня ЗАО «МЦСТ» (Московский центр SPARC-технологий). Многопроцессорный вычислительный комплекс (МВК) «Эльбрус-1» (разработан в 1973–1979-м) сдан государственной комиссии в 1980 году. Он был построен по нормам ТТЛ (транзисторно-транзисторная логика микросхемы) и состоял из биполярных транзисторов производительностью 12 миллионов операций в секунду, что соответствовало высокому мировому уровню того времени.
«Эльбрус-2» разработан в 1977–1984 годах, сдан в 1985-м. Производительность на 10 процессорах – 125 миллионов операций в секунду. Построен на базе интегральных схем ИС-100. Всего выпущено до 200 машин «Эльбрус-2» с разным числом процессоров. Каждый процессор имел частоту 20 МГц. Итоговая производительность была уже 125 млн о/пс – это сравнимо с процессорами архитектуры Cortex, который занимал не одну комнату и требовал серьезного охлаждения, а теперь помещается в очень малом чипе в смартфоне. В 1984 году завод печатных плат «Квант» стал одним из самых мощных проектов советской электронной промышленности.
Вклад «эффективных менеджеров»
Но после распада СССР электронная промышленность была отброшена назад. В России в 90-х годах она пришла в упадок из-за острого финансового и политического кризиса, а также отсутствия заказов на разработку и создание новых изделий. Приватизация предприятий привела микроэлектронику к развалу. Частные акционеры просто не смогли удержать нужные темпы развития, что привело к многократному отставанию от Запада, Китая, Малайзии. Если доля военной и гражданской отечественной электроники на мировом рынке электроники в 1980-м составляла 26 процентов, то к 2018 году снизилась до 0,8.
К сожалению, время было преступно упущено: с 1994 по 2000 год, например, компания Intel сделала огромный скачок: в процессорах повышены частоты на порядок, технологии техпроцесса микросхем усовершенствовались. А «Эльбрусы» так и остались на уровне начала 90-х годов. Поскольку весь компьютерный рынок прежде всего определяется процессорами и операционными системами. К тому же в данной производственной области возникли еще и кадровые проблемы. В 1991 году около 100 тысяч советских (российских) ученых и инженеров в области электроники и других областей убыли в США, другие страны. Это была катастрофа.

Николай Домницкий,
подполковник в отставке


План Барбаросса (434x689, 154Kb)

Погода сегодня 08 04 21
2 Погода сегодня (700x525, 222Kb)

Комментарии (0)КомментироватьВ цитатник или сообщество
efdpapsenting47

Без заголовка

Вторник, 16 Марта 2021 г. 08:07 (ссылка)

Ldmos транзистор Калуга - http://vk.com/wall-201038527_1148

Комментарии (0)КомментироватьВ цитатник или сообщество
qramzone

Без заголовка

Вторник, 16 Марта 2021 г. 08:06 (ссылка)

Ldmos транзистор цена ЕКб - http://vk.com/wall-201038527_1149

Комментарии (0)КомментироватьВ цитатник или сообщество
oyygesa

Без заголовка

Вторник, 16 Марта 2021 г. 06:29 (ссылка)

Ldmos транзистор Казань - http://vk.com/wall-201038527_1147

Метки:   Комментарии (0)КомментироватьВ цитатник или сообщество
sakonb

Без заголовка

Вторник, 16 Марта 2021 г. 06:14 (ссылка)

Ldmos транзистор цена ЕКб - http://vk.com/wall-201038527_1149

Комментарии (0)КомментироватьВ цитатник или сообщество
opstolunan80

Без заголовка

Вторник, 16 Марта 2021 г. 05:33 (ссылка)

Ldmos транзистор Казань - http://vk.com/wall-201038527_1147

Комментарии (0)КомментироватьВ цитатник или сообщество
canggentri

Без заголовка

Вторник, 16 Марта 2021 г. 04:23 (ссылка)

Ldmos транзистор цена Новосибирск - http://vk.com/wall-201038527_1150

Комментарии (0)КомментироватьВ цитатник или сообщество
vastdepilg

Без заголовка

Понедельник, 16 Марта 2021 г. 03:45 (ссылка)

Ldmos транзистор Калуга - http://vk.com/wall-201038527_1148

Комментарии (0)КомментироватьВ цитатник или сообщество

Следующие 30  »

<транзистор - Самое интересное в блогах

Страницы: [1] 2 3 ..
.. 10

LiveInternet.Ru Ссылки: на главную|почта|знакомства|одноклассники|фото|открытки|тесты|чат
О проекте: помощь|контакты|разместить рекламу|версия для pda